Exam Number:	
--------------	--

Department of Mechanical Engineering Michigan State University

Ph.D. Qualifying Examination January 2009 Dynamic Systems and Control

Open Book Answer All Questions All Questions Weighted Equally

Exam Prepared by

Clark J. Radcliffe Jongeun Choi

(revised 12-17-08)

1) Obtain the transfer function from R(s) to Y(s) where R(s) is the Laplace Transform of r(t) and Y(s) is the Laplace Transform of y(t).

2

2) The dynamics of a system are governed by the ordinary differential equation

$$\ddot{y}(t) + 2y(t) + \dot{y}^{2}(t) + \sin(y(t)) = \sqrt{u(t)}$$

which may also be written in the form

$$\ddot{y}(t) = f(u, y, \dot{y})$$

a) Let $v(t) = u(t) - u_0(t)$ and $x(t) = y(t) - y_0(t)$ and determine the linearized differential equation relating v(t) to x(t) for the equilibrium operating point at $y_0(t) = \pi/4$. Write the final solution in the box provided.

-F-10-50000-1-			

 $x_{ss}(t) =$

3) You are to design a Proportional + Derivative controller for the system shown below.

a) Determine the range of gains K_p and K_d that will lead to a stable closed-loop system.

$$< K_d <$$
 $< K_p <$

b) Determine the values of K_p and K_d that will result in the closed loop system having 70% critical damping and a natural frequency of 5 rad/sec.

$$K_P =$$
 $K_d =$

c) At the gains you supplied in part b), what is the steady state error for a unit step input to this system?

$$e_{ss} =$$

5 Rev. 12-17-08

4) Shown below is the Bode diagram of an uncompensated industrial process that is open-loop stable.

$$X_p =$$

b) If you were to augment the control designed in part A with either "integral" or "derivative" control action, which would you choose and why? Be specific, choose control action and show the analysis that justifies you choice.