Department of Mechanical Engineering
Michigan State University
East Lansing, Michigan

Ph.D. Qualifying Exam in Systems and Controls

- One open book.
- Open Notes.
- Answer all questions.
- All questions carry the same weight.

Exam prepared by

Professor R. Mukherjee
Professor J. Choi

January 2008
1 Problem

(a) Circuit

(a) Gain Bode Plot of TF $I(s)/V(s)$

Figure 1: RL Circuit.
2 Problem

Consider a simple pendulum shown in Fig. 2. The mass of the pendulum bob is m, the rod is massless, and assume acceleration due to gravity to be g. u denotes the applied input torque.

a. Derive the equation of motion of the pendulum.

b. Find the nominal input u_0 in order to keep the equilibrium point at the operating point $\theta_0 = \pi/4$.

c. Let $\tilde{\theta} := \theta - \theta_0$ and $\tilde{u} := u - u_0$. Obtain the linearized equation of motion of the pendulum in terms of $\tilde{\theta}$ and \tilde{u} about the operating point $\theta_0 = \pi/4$.

d. Let $L = 1/\sqrt{2}, m = 2, g = 10$. Determine the transfer function of the linearized system based on \tilde{u} and $\tilde{\theta}$, i.e., $G(s) := \frac{\tilde{\theta}(s)}{\tilde{u}(s)}$. Discuss the stability of the linearized system based on the transfer function $G(s)$.

![Figure 2: A simple pendulum](image-url)
4 Problem

A second-order system has the transfer function

\[G(s) = \frac{a_1}{s^2 + b_2s + b_3} \]

(a) Determine the values of \(a_1\), \(b_2\), and \(b_3\), given the following information:

(i) The DC gain of the system is 2.0.
(ii) The undamped natural frequency of the system is 2 rad/sec.
(iii) The output of the system lags behind a sinusoidal input of frequency 4 rad/sec by 135°.

(b) What will be the percentage overshoot of the system to a step input?