Exam	Number:	
Exam	Number:	

Department of Mechanical Engineering Michigan State University

Dynamic Systems and Control Ph.D. Qualifying Examination

May 2004

Open Book, Open Notes

Four Questions

All Questions are Weighed Equally

Prepared by

Cevat Gokcek

Clark J. Radcliffe

(revised May 5, 2004)

1. A typical geometry for a voice coil motor (loudspeaker) commonly used in hard disks is shown below. When a current i passes through the coil, a magnetic force F=Ci in the x direction is applied on the coil causing it to move, where C is a constant. When the coil moves with a velocity v in the magnetic field, a back emf e=Cv is generated across the coil that opposes the current flow. The effects of the air and conic membrane can be modeled as an equivalent mass M, damper B and spring K. The resistance of the coil is R and the inductance of the coil is L. The voice coil motor is driven by the input u and its output is x.

- (a) Write the differential equations that governs the dynamics of the system.
- (b) Determine a state-space representation of the system.
- (c) Find the transfer function from u to x.
- (d) Find x in the steady-state when u is a unit step.

2. Consider the system

$$\ddot{y}(t) + 3y(t)\dot{y}(t) + 4\arctan[y(t) - u(t)/2] = 0, \ t > 0,$$

$$y(0)=1/2,$$

$$\dot{y}(0) = 1/5,$$

where u(t) is the input and y(t) is the output.

- (a) Let u(t) = U(t) = 2 for t > 0 and determine y(t) = Y(t) for t > 0 at equilibrium.
- (b) Let $u(t) = U(t) + \delta u(t)$ and $y(t) = Y(t) + \delta y(t)$, where U(t) = 2 for t > 0 and Y(t) as determined above. Linearize the differential equation about U(t) and Y(t). Note that $d[\arctan(x)]/dx = 1/(1+x^2)$.
- (c) Determine y(t) approximately using linearization when $u(t) = 2 + \cos(t)$, t > 0.

3. Consider the control system shown below with $P(s) = \frac{s+4}{s(s+2)}$.

- (a) When $C(s) = K_P + K_I/s$, determine all values K_P and K_I for which the closed-loop system is stable.
- (b) When $C(s) = K_P + K_D s$, determine all values K_P and K_D for which the closed-loop system is stable.
- (c) Accurately sketch the root locus of the system when C(s)=K.
- (d) Design a PI controller so that the closed-loop system has a pole at s=-1 and the steady-state error for a unit parabolic input is 1/3.

4. Consider the control system shown below with an open-loop stable plant P(s) whose Bode plot is as depicted.

- (a) Determine the gain margin, phase margin, gain crossover frequency and phase crossover frequency of the system when C(s) = 1.
- (b) Sketch the Nyquist plot of P(s)C(s) when C(s) = 1.
- (c) Is the closed-loop system stable when C(s) = 1?
- (d) Design a proportional controller C(s)=K that minimizes the steady-state error due a unit step and achieves at least 6 dB gain margin and 25 deg phase margin.