mber:
mber:

Department of Mechanical Engineering Michigan State University

Ph.D. Qualifying Examination August 2007 Dynamic Systems and Control

Open Book Answer All Questions All Questions Weighted Equally

Exam Prepared by

Clark J. Radcliffe Ranjan Mukherjee

(revised 4-17-07)

1) The unit step response of the second-order system

$$G(s) = \frac{1}{a_2 s^2 + a_1 s + a_0}$$

is shown in the figure below. Determine the values of the parameters $\,a_{\scriptscriptstyle 0}^{}$, $\,a_{\scriptscriptstyle 1}^{}$, and $\,a_{\scriptscriptstyle 2}^{}$.

2) The rotational dynamics of a pendulum with a vertical applied force are governed by the ordinary differential equation

$$mr\ddot{\theta}(t) + mg\sin(\theta) = u(t)\sin(\theta)$$

To simplify the problem, assume m = 1 kg and r = 1 m

- a) Find a linear differential equation valid about an operating point where the operating point angle $\theta_0 = \pi/4$.
- b) For the required equilibrium value of the force, u_0 required to hold the system at $\theta_0 = \pi/4$, Based on $y_{ss}(t)$, determine the approximate steady-state response $\theta_{ss}(t)$ as $t \Rightarrow \infty$ for an input force $u(t) = u_0 + 0.1\sin(0.2t)$.

3) You are to design a Proportional + Derivative controller for the system shown below.

a) Determine the range of gains K_p and K_d that will lead to a stable closed-loop system.

$$< K_d <$$
 $< K_p <$

b) Determine the values of K_p and K_d that will result in the closed loop system having 70% critical damping and a natural frequency of 5 rad/sec.

$$K_P =$$
 $K_d =$

c) At the gains you supplied in part b), what is the steady state error for a unit step input to this system?

$$e_{ss} =$$

4) Shown below is the Bode diagram of an uncompensated industrial process that is open-loop stable.

$$K_p =$$

b) If you were to augment the control designed in part A with either "integral" or "derivative" control action, which would you choose and why? Be specific, choose and control action and show the analysis that justifies you choice.