Exam Number: -----

## Department of Mechanical Engineering

Michigan State University

Solid Mechanics Ph.D. Qualifying Examination

August 2006

Open Book Open Notes All Questions are weighted equally.

Prepared by

Farhang Pourboghrat Patrick Kwon

- 1. The I-beam is loaded as shown:
- a) Calculate the reaction forces,  $R_A$ ,  $R_B$ , and bending moment,  $M_A$ , as a function of L and  $w_o$ .
- b) Calculate  $M_{\rm st}$ , assuming L=1.8~m and  $w_o=10~kN/m$ .



- 2. The pin-joined steel frame with the following properties (E=200~GPa,  $\sigma_{all}=3.6~MPa$ ) is loaded as shown:
- a) Calculate the safety factor  $m = \frac{P_{cr}}{F}$  for the member buckling about the y-y axis.
- b) Calculate the safety factor  $n = \frac{\sigma_{all}}{\sigma}$  for the member failing in tension.



Cross Section for AB and AC:



- 3. You are assigned to determine if the diameter of the shaft AB designed at 0.6" is safe based on the maximum stress at the cross-section A. The material is a ferrous alloy whose yield strength is 120ksi. Assume the load on the pedal is 300lb with the frictional load of 90lb.
- (a) Determine the reaction loads and moments at the cross-section A
- (b) Determine the location and magnitude of the maximum stress



4. (a) Determine the 3-D Mohr circle for stress for the body which is loaded with 10MPa on a frictionless surface. (b) If the yield strength is 12MPa, will this body yield? You have to show your work to get any credit. (c) Determine the 3-D Mohr circle for strain given that E=20GPa and v=0.2. (d) If you have the strain rosette (0°/45°/90°) on the front face of the body, what are the readings on each of the strain gauges?

