Department of Mechanical Engineering Michigan State University East Lansing, Michigan

Ph.D. Qualifying Exam in Solid Mechanics

- Open One Book
- Answer all questions. All questions have the same weight.

Exam prepared by

Professor R. Averill

Professor P. Kwon

August 2020

A strain rosette is attached to a point on the surface of a pump as shown. The pump is made of steel. Due to the loading, the strain gauges give a reading of:

$$\varepsilon_a = -250 E - 6$$

$$\varepsilon_b = 300 E - 6$$

$$\varepsilon_c = -200 E - 6$$

$$\varepsilon_b = 300 E - 6$$

$$\varepsilon_c = -200 E - 6$$

Determine:

- a) the complete strain state at the point,
- b) the *shear stress* τ_{xy} at the point.

	Steel	Cupronickel	Aluminum
Young's Modulus	30x10 ⁶ psi	20x10 ⁶ psi	10x10 ⁶ psi
	(210 GPa)	(140 GPa)	(70 GPa)
Shear Modulus	11 x 10 ⁶ psi	7.5 x 10 ⁶ psi	4 x 10 ⁶ psi
	(80 GPa)	(52 GPa)	(28 GPa)
Coefficient of Thermal	6.5 x 10 ⁻⁶ 1/°F	9.75 x 10 ⁻⁶ 1/°F	13 x 10 ⁻⁶ 1/°F
Expansion	$(12 \times 10^{-6} \text{ 1/} ^{\circ}\text{C})$	(18 x 10 ⁻⁶ 1/℃)	$(24 \times 10^{-6} \text{ 1/} \%)$

Student ID		

The circular aluminum rods AB and BC are attached to a rigid support at C and are initially unstressed. At room temperature (20C) a 1 mm gap exists between the end of the rod and the rigid support at A.

If the temperature is increased to 140C, determine:

- a) the normal stress in the rod AB
- b) the change in length of the rod AB

	Steel	Cupronickel	Aluminum
Young's Modulus	30x10 ⁶ psi	20x10 ⁶ psi	10x10 ⁶ psi
_	(210 GPa)	(140 GPa)	(70 GPa)
Shear Modulus	11 x 10 ⁶ psi	7.5 x 10 ⁶ psi	4 x 10 ⁶ psi
	(80 GPa)	(52 GPa)	(28 GPa)
Coefficient of Thermal	6.5 x 10 ⁻⁶ 1/°F	9.75 x 10 ⁻⁶ 1/°F	13 x 10 ⁻⁶ 1/°F
Expansion	$(12 \times 10^{-6} \text{ 1/} \text{ C})$	(18 x 10 ⁻⁶ 1/℃)	(24 x 10 ⁻⁶ 1/℃)

Student ID	

A structure has a 90-degree elbow made of solid cylinder coming out of rigid wall. The radius of the solid cylinder is 2cm. The forces are given in two directions, F_y =100N and F_x =50N. (a) Determine the stresses on A presented in the picture. (b) Determine the complete stress state at the most critical location where yielding is most likely to occur.

The beam whose dimensions and cross-section are also shown below is loaded with a distributed load and a concentrated load as shown below. Determine the maximum shear stress and the maximum normal stress in the beam.

