Department of Mechanical Engineering Michigan State University
 East Lansing, Michigan

Ph.D. Qualifying Exam in Solid Mechanics

- Open One Book
- Answer all questions. All questions have the same weight.

Exam prepared by
Professor R. Averill
Professor P. Kwon
August 2020

Problem 1

A strain rosette is attached to a point on the surface of a pump as shown. The pump is made of steel. Due to the loading, the strain gauges give a reading of:
$\varepsilon_{a}=-250 E-6$
$\varepsilon_{b}=300 E-6$
$\varepsilon_{c}=-200 E-6$

Determine:
a) the complete strain state at the point,
b) the shear stress $\tau_{x y}$ at the point.

	Steel	Cupronickel	Aluminum
Young's Modulus	$30 \times 10^{6} \mathrm{psi}$	$20 \times 10^{6} \mathrm{psi}$	$10 \times 10^{6} \mathrm{psi}$
	$(210 \mathrm{GPa})$	$(140 \mathrm{GPa})$	$(70 \mathrm{GPa})$
Shear Modulus	$11 \times 10^{6} \mathrm{psi}$	$7.5 \times 10^{6} \mathrm{psi}$	$4 \times 10^{6} \mathrm{psi}$
	$(80 \mathrm{GPa})$	$(52 \mathrm{GPa})$	$(28 \mathrm{GPa})$
Coefficient of Thermal	$6.5 \times 10^{-6} 1 /^{\circ} \mathrm{F}$	$9.75 \times 10^{-6} 1 /^{\circ} \mathrm{F}$	$13 \times 10^{-6} 1 /{ }^{\circ} \mathrm{F}$
Expansion	$\left(12 \times 10^{-6} 1 /{ }^{\circ} \mathrm{C}\right)$	$\left(18 \times 10^{-6} 1 /{ }^{\circ} \mathrm{C}\right)$	$\left(24 \times 10^{-6} 1 /{ }^{\circ} \mathrm{C}\right)$

Problem 2

The circular aluminum rods $A B$ and $B C$ are attached to a rigid support at C and are initially unstressed. At room temperature (20C) a 1 mm gap exists between the end of the rod and the rigid support at A.
If the temperature is increased to 140C,
 determine:
a) the normal stress in the rod $A B$
b) the change in length of the $\operatorname{rod} A B$

	Steel	Cupronickel	Aluminum
Young's Modulus	$30 \times 10^{6} \mathrm{psi}$	$20 \times 10^{6} \mathrm{psi}$	$10 \times 10^{6} \mathrm{psi}$
	$(210 \mathrm{GPa})$	$(140 \mathrm{GPa})$	$(70 \mathrm{GPa})$
Shear Modulus	$11 \times 10^{6} \mathrm{psi}$	$7.5 \times 10^{6} \mathrm{psi}$	$4 \times 10^{6} \mathrm{psi}$
	$(80 \mathrm{GPa})$	$(52 \mathrm{GPa})$	$(28 \mathrm{GPa})$
Coefficient of Thermal	$6.5 \times 10^{-6} 1 /^{\circ} \mathrm{F}$	$9.75 \times 10^{-6} 1 /^{\circ} \mathrm{F}$	$13 \times 10^{-6} 1 /{ }^{\circ} \mathrm{F}$
Expansion	$\left(12 \times 10^{-6} 1 /{ }^{\circ} \mathrm{C}\right)$	$\left(18 \times 10^{-6} 1 /{ }^{\circ} \mathrm{C}\right)$	$\left(24 \times 10^{-6} 1 /{ }^{\circ} \mathrm{C}\right)$

Problem 3

A structure has a 90-degree elbow made of solid cylinder coming out of rigid wall. The radius of the solid cylinder is 2 cm . The forces are given in two directions, $F_{y}=100 \mathrm{~N}$ and $F_{x}=50 \mathrm{~N}$. (a) Determine the stresses on A presented in the picture. (b) Determine the complete stress state at the most critical location where yielding is most likely to occur.

Problem 4

The beam whose dimensions and cross-section are also shown below is loaded with a distributed load and a concentrated load as shown below. Determine the maximum shear stress and the maximum normal stress in the beam.

