\qquad

Department of Mechanical Engineering Michigan State University East Lansing, Michigan

Ph.D. Qualifying Exam in Solid Mechanics

- Open One Book
- Answer all questions. All questions have the same weight.

Exam prepared by

Professor G. Recktenwald
Professor S. Roccabianca

August 2022

Problem 1

A hollow aluminum tube is surrounding a solid steel cylinder. The tube and cylinder are fixed to the wall at A. They are both welded to a rigid plate at B. The plate can move freely. When the temperature is $45^{\circ} \mathrm{F}$ there are no internal stresses.
a) Find the reaction R_{A} for the steel bar when the temperature reaches $145^{\circ} \mathrm{F}$.

b) Find the internal stress in the steel bar when the temperature reaches $145^{\circ} \mathrm{F}$.

Steel: Young's Modulus $=30 \times 10^{6} \mathrm{psi}$
Coefficient of thermal expansion $=6.5 \times 10^{-6} 1 /{ }^{\circ} \mathrm{F}$
Aluminum: Young's Modulus $=10 \times 10^{6} \mathrm{psi}$
Coefficient of thermal expansion $=13 \times 10^{-6} 1 /{ }^{\circ} \mathrm{F}$

Problem 2

The 3D structure shown in the Figure has a cross section of diameter 1 inch and is loaded with to forces shown. Find the following values.
a) Calculate the internal forces and moments at cut D (halfway between A and B).
b) Calculate the complete stress state at point g .
c) Draw the stress element for the stress at the point g.

Problem 3

The beam shown has a $10 \mathrm{kip} / \mathrm{ft}$ load across the whole beam. Find the 2D state of stress at point g, shown on the cross section at cut C .

Cross section

Problem 4

Using the cut and integration method, find the piecewise function $y(x)$ for the deflection of the beam. What is the deflection at the end of the beam?

For this problem, use $E I=5 E 3\left[m^{4} \mathrm{~Pa}\right]$

