Solid \& Structural Mechanics

Qualifying Exam
 Department of Mechanical Engineering

January 2020

Closed book
One-page note
In order to receive full credit, you must show all work A calculator is permitted

Answer all questions
All questions have equal weight

TIME: 3.0 hrs

Prepared by: Profs. Sara Roccabianca, Lik C. Lee \& Patrick Kwon

1. Estimate the maximum value of the distributed load q (expressed in N / m) for the beam shown in Figure, given that:
a. a prismatic beam with a constant rectangular cross section of 20 cm x 30 cm (see Figure);
b. the ultimate compression/tension strength for the beam of $\sigma^{u}=100 \mathrm{MPa}$ and the ultimate shear strength of $\tau^{u}=10 \mathrm{MPa}$; and
c. the beam with a factor of safety of 2.5 .

20 cm
2. Using the Mohr's circle technique, for the stress state in the Figure ($\tau=30 \mathrm{MPa}$), determine a. The principal stresses and the angle for the principal plane.
b. The maximum shear and angle of the maximum shear plane

3.The above figure shows a composite shaft consisting of:
(1) a solid section $0 \leq x \leq L_{1}$ with diameter D_{1} and shear modulus G_{1},
(2) a hollow section $L_{1}<x \leq L_{2}$ with inner diameter $D_{2, i}$, outer diameter $D_{2, o}$ and shear modulus G_{2}.

Given that the solid and hollow sections are fixed together without any slip, find the value of torque T imposed at $x=L_{1}$ that produces a maximum shear stress of τ at $x=L$, where $L<L_{1}$. Express T as a function of $\tau, L_{1}, L_{2}, D_{1}, D_{2, i}, D_{2, o}, G_{1}, G_{2}$. What is the lowest value of shear stress at $x=L$?

4. The structure is made with the solid cross-section with the dimension of 50 mm and 100 mm . (a) Determine the reaction forces and moment at the base. (b)
Determine the stresses at the base located A. Please do not ignore any small stress.

