Code No. \qquad

Mathematics Ph.D. Qualifier Exam

Department of Mechanical Engineering
Michigan State University

August 2019

Directions: Open Book (one book allowed), open notes (limited to one 3 ring binder of notes in the student's own handwriting - no photocopies), Calculators NOT permitted.

All problems carry equal weight.

Exam prepared by Profs. S. Baek and H. Modares.

Problem \#1. The Gram-Schmidt orthogonalization is the way of forming mutually orthogonal vectors from a series of given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{m}}$ (see Appendix \mathbf{A} in the next page for the Gram-Schmidt orthogonalization). Similarly, the Gram-Schmidt orthogonalization can be applied to a space of functions. Using the orthogonalization process, determine orthogonalized polynominals on a closed interval $[-1,1]$ (i.e., from the given polynomials, $1, x, x^{2}, x^{3}$, and x^{4}, determine orthogonal polynomials up to fourth order). Use the inner product defined as

$$
<f \cdot g>=\int_{-1}^{1} f(x) g(x) d x
$$

Appendix A

Gram-Schmidt process:

We define the projection operator by

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

where $\langle\mathbf{u}, \mathbf{v}\rangle$ denotes the inner product of the vectors \mathbf{u} and \mathbf{v}. This operator projects the vector \mathbf{v} orthogonally onto the line spanned by vector \mathbf{u}.

The Gram-Schmidt process then works as follows:

$$
\begin{aligned}
\mathbf{u}_{1} & =\mathbf{v}_{1}, & \mathbf{e}_{1} & =\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|} \\
\mathbf{u}_{2} & =\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{2}\right), & \mathbf{e}_{2} & =\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|} \\
\mathbf{u}_{3} & =\mathbf{v}_{3}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{3}\right)-\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{3}\right), & \mathbf{e}_{3} & =\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|} \\
\mathbf{u}_{4} & =\mathbf{v}_{4}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{4}\right)-\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{4}\right)-\operatorname{proj}_{\mathbf{u}_{3}}\left(\mathbf{v}_{4}\right), & \mathbf{e}_{4} & =\frac{\mathbf{u}_{4}}{\left\|\mathbf{u}_{4}\right\|} \\
& \vdots & & \vdots \\
\mathbf{u}_{k} & =\mathbf{v}_{k}-\sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{j}}\left(\mathbf{v}_{k}\right), & \mathbf{e}_{k} & =\frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|} .
\end{aligned}
$$

The sequence $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ is the required system of orthogonal vectors, and the normalized vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$ form an orthonormal set. The calculation of the sequence $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ is known as Gram-Schmidt orthogonalization, while the calculation of the sequence $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$ is known as Gram-Schmidt orthonormalization as the vectors are normalized.

To check that these formulas yield an orthogonal sequence, first compute ($\mathbf{u}_{1}, \mathbf{u}_{2}$)
 by substituting the above formula for \mathbf{u}_{2} : we get zero. Then use this to compute ($\mathbf{u}_{1}, \mathbf{u}_{3}$) again by substituting the formula for \mathbf{u}_{3} : we get zero. The general proof proceeds by mathematical induction.

Problem \#2. Consider a counterclockwise plane rigid-body rotation about the z axis with an angular velocity $\boldsymbol{\omega}=\omega \mathbf{k}$, where ω is constant. Determine the curl of the velocity of a plane rigid rotation (be careful for determining the sign!).
Note: curl $\mathbf{v}=\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \mathbf{i}-\left(\frac{\partial v_{z}}{\partial x}-\frac{\partial v_{x}}{\partial z}\right) \mathbf{j}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \mathbf{k}$.

Problem \#3. Determine the centroid $C(\bar{x}, \bar{y})$, and the polar moment of inertia (J) with respect to the centroid for a quarter semicircle with the radius r shown in the following figure, where
$\bar{x}=\frac{1}{A} \int x d A, \overline{\mathrm{y}}=\frac{1}{A} \int y d A, \quad J=\int(x-\bar{x})^{2}+(y-\bar{y})^{2} d A$.

Problem \#4. Find the general solution for the following differential equation

$$
\ddot{y}+y=\frac{1}{2} \operatorname{Sec}(x)
$$

Problem \# 5. Consider the following Matrix.

$$
\left[\begin{array}{ccc}
3 & 6 & -9 \\
2 & 4 & -5 \\
-2 & -3 & 4
\end{array}\right]
$$

Find the inverse and rank of the matrix.

Problem \# 6. Consider the following system of equations:

$$
\begin{aligned}
& 3 x_{1}+6 x_{2}+9 x_{3}=15 \\
& 2 x_{1}+4 x_{2}-6 x_{3}=10 \\
& -2 x_{1}-3 x_{2}+4 x_{3}=-6
\end{aligned}
$$

Use elementary row operations to reduce the augmented matrix corresponding to this system to a Reduced Row Echelon Form (RREF), and then find all its solutions.

Solution:

