Code Number	:
	-

MATHEMATICS QUALIFYING EXAM

January 2008

OPEN BOOK (only one book allowed)

Answer all questions

All questions have equal weight

TIME: 3.0 hrs

Prepared by: Profs. A. Benard and G. Brereton

Problem #1

Consider

 $f(x, y, z) = \sin(x^2 + y^2 + z^2) + xy + xz + yz$. One of its critical point (min, max, or saddle point) is (0,0,0). Identify by computing the variou first- and second-order partial derivatives the nature of the critical point you have identified.

Problem #2

Stokes' Theorem can be stated as

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma$$

Verify Stokes' theorem using the vector field $\mathbf{F} = (x^2 - y)\mathbf{i} + 4z\mathbf{j} + x^2\mathbf{k}$ where the closed contour is comprised of the x and y coordinate axis and the portion of the circle $x^2 + y^2 = a^2$ that lies in the first quadrant with z = 1.

Consider
$$A = \begin{pmatrix} 2 & -2 & 0 \\ 3 & 1 & 0 \end{pmatrix}$$

(0 0 2) and find all the eigenvalues of matrix A. Find the eigenspace corresponding to the rea

eigenvalue of A.

Problem #3

a) What is the general solution of the following ODE?

Problem 4.

$$y' - 3y = e^{3x} \sin x$$

b) What is the solution to the following initial value problem, and on what interval is

$$y'=x\sin x^2\;,\;y(0)=3$$
 c) Solve the following initial value problem and determine the interval on which the

solution is defined.
$$y' = \frac{y+x}{y-x} \;,\; y(2) = 0$$

is the general solution of the following ODE?
$$y' = 2\left(\frac{y}{\pi}\right)^3 + \frac{y}{\pi}$$

d) What is the general solution of the following ODE?

e) What is the solution of the following ODE? $y'' + 4y = 2e^x - \sin x$ The failure rate of a certain mechanical device has been studied and quantified. The problem of finding the rate dr/dt at which devices should be replaced, to keep a specified number

Problem 5.

$$f(t)$$
 of devices operational at time t , is described by the equation
$$f(t) = f(0)p(t) + \int_{0}^{t} p(t-\tau)\frac{dr}{d\tau} d\tau \qquad (1$$

where f(0) is the number of new devices installed at time t = 0 and p(t) is a function tha

determines the device's longevity and takes the form $p(t) = e^{-ct}$. Using Laplace transformation or otherwise, find the required replacement rate dr/dt(t)of devices so that the number of operational devices f(t) is always a constant number A Verify your answer by evaluating (1) in the physical domain.

Explain briefly (but do not attempt to solve) how your solution strategy for this probler might change if p(t) = c/t.

The deviation of fluid pressure p from its ambient value during one-dimensional acoust

Problem 6.

vibrations is described by the equation $c^2 \frac{\partial^2}{\partial x}$

$$c^{2} \frac{\partial^{2} p}{\partial x^{2}} - \frac{\partial^{2} p}{\partial t^{2}} = 0$$

where c is the (constant) sound speed in the fluid. The lateral velocity u driven by acoust motions is related to the pressure field by the equation $\rho \frac{\partial u}{\partial t} = -\frac{\partial p}{\partial x}$

$$\rho \frac{1}{\partial t} = -\frac{1}{\partial x}$$

where ρ is the (constant) fluid density. We consider the well-known case of acoustic vibrations in a long tube or bottle that is closed at $x = 0$ (where $u = 0$ and $\partial p/\partial x = 0$) are

open at x = L (where p = 0). Find expressions for the pressure oscillations, and then the velocity oscillations, that arise from these acoustic vibrations.

Suppose these acoustic vibrations are to be damped by placing a fibrous material, the

will retard the fluid motion, at a location at which the fluid velocity is greatest. What the amplitude of the pressure field (the sound you are trying to damp) at this location?