Math Qualifying Exam Department of Mechanical Engineering

August 2009

Open book (only one book allowed)

Answer all questions
All questions have equal weight

TIME: 3.0 hrs

Prepared by: Profs. F. Pourboghrat and S. Baek

(In order to receive full credit you must show all work)

Problem #1. Solve the initial-value problem (for x>0)

$$\frac{dy}{dx} - \frac{2}{x}y = x^3 e^x, \qquad y(1) = 0$$

Problem #2. Find all the eigenvalues and eigenfunctions for the following boundary value problem.

$$y'' + \lambda y = 0,$$
 $y(0) - y'(0) = 0,$ $y(\pi) - y'(\pi) = 0$

$$y(\pi) - y'(\pi) = 0$$

Problem #3. For the given matrix A, find an orthogonal matrix Q and a diagonal matrix D such that $A = QDQ^T$ where det(Q)=1 (Hint: One of eigenvalues of A is 5.)

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

Problem #4. Solve the initial value problem:

$$(x^2+1)y'+y^2+1=0,$$
 $y(0)=1$

Problem #5. (a) Find the directional derivative $\partial f/\partial s$ of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at the point P:(2,1,3) in the direction of the vector $a = \hat{i} - 2\hat{k}$, and (b) Find $\operatorname{div}(\nabla f)$.

Problem #6. The differential equations governing a mechanical system consisting of two masses and two springs are given as:

$$\begin{cases} \ddot{y}_1 = -5y_1 + 2y_2 \\ \ddot{y}_2 = 2y_1 - 2y_2 \end{cases}$$

Solve for $y_1(t)$ and $y_2(t)$, the displacements of the masses in terms of time t.