Department of Mechanical Engineering
Michigan State University
Mathematics
Ph.D. Qualifying Examination
August 2006

One Book, Closed Notes
All six questions are weighted equally
Question 7 is for extra credit

Prepared By:

Dr. Alejandro Diaz
Dr. Mei Zhuang
Question 1

Solve the initial value problem

\[\frac{d x_1}{dt} + 2x_1 - x_2 = 1 + e^{-t} \]

\[\frac{d x_2}{dt} + x_1 + 2x_2 = 3 \]

with

\[x_1(0) = \frac{5}{2} \text{ and } x_2(0) = -\frac{1}{2} \]
Questions 2

Determine whether the vectors $v_1 = (1,1,0)$, $v_2 = (1,-2,2)$, and $v_3 = (3,0,3)$ are linearly independent.

If they are not linearly independent, give the relation among the three vectors and suggest a new vector or vectors which, along with v_1, v_2 and v_3, span \mathbb{R}^3.

If they are linearly independent, express the vector $(1,1,1)$ as a linear combination of v_1, v_2 and v_3.

Question 3

Derive the Taylor series of $\frac{1}{x-1}$ about $x=4$ and determine the radius of convergence R of the Taylor series expansion.
Question 4

What is the best linear approximation \(g(x) \) to the function \(f(x) = 2x^3 + 4x^2 - 2 \) in the interval \([-1, 1]\)? Use a least square approach, i.e., define \(g \) to minimize the error \(\int_{-1}^{1} (f - g)^2 \, dx \).
Question 5

Solve the diffusion equation

\[\frac{\partial u}{\partial t} = k^2 \frac{\partial^2 u}{\partial x^2} \quad \text{for} \quad 0 \leq x \leq L, \quad t > 0 \]

with the boundary conditions

\[u(0,t) = u(L,t) = 0, \quad t > 0 \]

and the initial condition

\[u(x,0) = \begin{cases}
 x, & 0 \leq x \leq L/2 \\
 L - x, & L/2 \leq x \leq L
\end{cases} \]
Questions 6

Diagonalize the matrix

\[
A = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

i.e., find matrices \(Q\) and \(D\) such that \(Q^{-1}AQ = D\) and \(D\) is diagonal. If \(A\) cannot be diagonalized, explain why.