Student Code Number_________

Department of Mechanical Engineering
Michigan State University

Mathematics
Ph.D. Qualifying Exam

August, 2021

• Closed book, notes and a non-networked calculator
• All four questions are weighted equally.
• All work and all steps must be shown, if all work is not provided credit will not be given.

Prepared by
Ahmed Naguib
Indrek Wichman

NOTE: LAPLACE TABLES PROVIDED
Possibly useful information for problems 1 and 2:

1. See the attached Laplace Transform tables:

2. Table 1. Particular-solution forms for constant-coefficient linear ODEs:

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$y_p(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 0$ is not a root of the characteristic equation</td>
<td>$y_p(x) = A_0 + A_1 t + A_2 t^2 + \ldots + A_n t^n$</td>
</tr>
<tr>
<td>$m = 0$ is a root</td>
<td>$y_p(x) = t(A_0 + A_1 t + A_2 t + \ldots + A_n t^n)$</td>
</tr>
<tr>
<td>$m = 0$ is a repeated root</td>
<td>$y_p(x) = t^2 (A_0 + A_1 t + A_2 t^2 + \ldots + A_n t^n)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$f(t) = Ce^{kt}$</th>
<th>$y_p(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = k$</td>
<td>$y_p(t) = Ae^{kt}$</td>
</tr>
<tr>
<td>$m = k$ is a root</td>
<td>$y_p(t) = Axe^{kt}$</td>
</tr>
<tr>
<td>$m = k$ is a repeated root</td>
<td>$y_p(t) = At^2 e^{kt}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$g(t) = C\cos(kt)$</th>
<th>$y_p(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = ik$ is not a root</td>
<td>$y_p(t) = A\cos(kt) + B\sin(kt)$</td>
</tr>
<tr>
<td>$m = ik$ is a root</td>
<td>$y_p(t) = t(A\cos(kt) + B\sin(kt))$</td>
</tr>
</tbody>
</table>

3. Fourier Series:

Fourier series of a periodic signal with period $2T$ is given by:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{n\pi t}{T} \right) + b_n \sin \left(\frac{n\pi t}{T} \right) \right),$$

where, the expansion coefficients a_0, a_n, and b_n can be obtained using:

$$a_0 = \frac{1}{T} \int_{-T}^{T} f(t) dt,$$

$$a_n = \frac{1}{T} \int_{-T}^{T} f(t) \cos \left(\frac{n\pi t}{T} \right) dt,$$

$$b_n = \frac{1}{T} \int_{-T}^{T} f(t) \sin \left(\frac{n\pi t}{T} \right) dt, \quad n = 1,2,3, \ldots$$

4. Partial Fractions:

- Let $Q(s)$ have m unrepeat ed real roots: a_1, a_2, \ldots, a_m. Thus,

$$Q(s) = (s - a_1)(s - a_2) \ldots (s - a_m),$$

then,

$$F(s) = \frac{P(s)}{Q(s)} = \frac{A_1}{s-a_1} + \frac{A_2}{s-a_2} + \ldots + \frac{A_m}{s-a_m}.$$

Where,

$$A_i = \lim_{s \to a_i} (s - a_i)F(s)$$
Let \(Q(s) \) have \(n \) roots \(a_1, a_2, a_3, \ldots, a_n \), with \(a_1 \) repeated \(m \) times, then
\[
F(s) = \frac{P(s)}{Q(s)} = \frac{B_m}{(s-a_1)^m} + \cdots + \frac{B_2}{(s-a_2)^2} + \frac{B_1}{s-a_1} + \frac{A_2}{s-a_2} + \cdots + \frac{A_n}{s-a_n},
\]
where,
\[
B_m = \lim_{s \to a_1} \frac{P(s)}{Q(s)} (s - a_1)^m,
B_{m-1} = \lim_{s \to a_1} \frac{d}{ds} \left[\frac{P(s)}{Q(s)} (s - a_1)^m \right],
B_{m-2} = \frac{1}{2} \lim_{s \to a_1} \frac{d^2}{ds^2} \left[\frac{P(s)}{Q(s)} (s - a_1)^m \right],
B_{m-3} = \frac{1}{3 \times 2} \lim_{s \to a_1} \frac{d^3}{ds^3} \left[\frac{P(s)}{Q(s)} (s - a_1)^m \right],
\]
\[
\vdots
\]
\[
B_1 = \frac{1}{(m-1)!} \lim_{s \to a_1} \frac{d^{m-1}}{ds^{m-1}} \left[\frac{P(s)}{Q(s)} (s - a_1)^m \right].
\]

Possibly useful information & formulas for Problems 3 and 4:

1. **Gradient:** Also known as the “del” operator, \(\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \)

2. **Partial derivative:** If \(u(x, y) \) then \(\frac{\partial u}{\partial x} \) means taking the derivative of \(u(x, y) \) with respect to \(x \) while holding \(y = constant \).

3. **Total derivative of a field function:** \(du(x, y, z, t) = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz + \frac{\partial u}{\partial t} dt \).

4. **Partial differential equation:** A mathematical relation between quantities that are differentiated with respect to several (at least two) different independent variables.

5. **Fourier Series:**

 (1) Sine series: \(f(t) = \sum_{n=1}^{\infty} b_n \sin \left(\frac{n \pi t}{T} \right) ; \quad b_n = \frac{1}{T} \int_{-T}^{T} f(s) \sin \left(\frac{n \pi s}{T} \right) ds, \quad -T < t < T. \)

 (2) Cosine series: \(f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \left(\frac{n \pi t}{T} \right) ; \quad a_n = \frac{1}{T} \int_{-T}^{T} f(s) \cos \left(\frac{n \pi s}{T} \right) ds, \quad -T < t < T. \)

The **general series** is given in the information for Problems 1 and 2 above.
6. **Trigonometric Identities:**

 (1) \(\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \)

 (2) \(\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \)

7. **Superposition Principle:** For a linear PDE the solution \(u(x, y, z, t) \equiv u(\vec{x}, t) \) can be written as a superposition of solutions \(u_1(\vec{x}, t), u_2(\vec{x}, t), \ldots \) as needed, each component satisfying different BCs.

8. **Partial Derivative:** If \(f(x, y, z) \), the differentiation operation \(\frac{\partial f}{\partial x} \) holds \(y, z \) constant, \(\frac{\partial f}{\partial y} \) holds \(x, z \) constant, \(\frac{\partial f}{\partial z} \) holds \(x, y \) constant.

9. **Gram-Schmidt Orthogonalization:** \(v_i = u_i - \sum_{j=1}^{i-1} \frac{u_i \cdot v_j}{v_j \cdot v_j} v_j \), where the \(v_i \) and the \(u_i \) are vectors.

10. **Separation of Variables:** For the solution of a partial differential equation for the function \(\varphi(x_1, x_2, x_3, t) \) we try \(\varphi(x_1, x_2, x_3, t) = \Phi_1(x_1) \Phi_2(x_2) \Phi_3(x_3) \Phi_4(t) \). If this solution works the equations for the component functions \(\Phi_i \) will be ODEs. In addition, the BC and ICs will sort out properly and the problem will be well-posed.
Problem 1: ODE with Periodic Forcing:

Find the general solution of the following ODE:

$$\frac{d^2y}{dt^2} + 8\frac{dy}{dt} + 16y = \frac{1}{2}F(t),$$

where $F(t)$ is a periodic function $F(t) = F(t + 2\pi)$, and

$$F(t) = \begin{cases}
 t; & -\frac{\pi}{2} < t < \frac{\pi}{2} \\
 \pi - t; & \frac{\pi}{2} < t < 3\frac{\pi}{2}
\end{cases}$$
Problem 2: ODE with Non-Periodic Forcing:

If $F(t)$ in Problem 1 is only active for the first period $0 \leq t \leq 2\pi$ and is zero otherwise, solve Problem 1 using Laplace Transforms. Assume $y(0) = y'(0) = 0$, where the prime denotes differentiation with respect to time, $y' = \frac{dy}{dt}$.
Problem 3: PDEs: Consider the two classes of partial differential equations:

\[i \) \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \]

\[ii) \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \]

The physical interval of interest is \(0 < x < 1 \). The boundary conditions are

\[u(0, t) = 1, u(1, t) = 1. \]

a) Without yet applying any initial condition or conditions, write, for each equation (i) and (ii) the general solution that satisfies the boundary conditions.

b) Now apply the IC \(u(x, 0) = 1 + 0.5sin2\pi x \) and use the appropriate equation in order to derive your final solution. Do not try to solve the problem for which this IC is a mismatch.

c) Draw the evolution in time of the final solution. Write the scales on the axes. Does it approach a steady state? Describe the solution.
Problem 4: Second Order System: In the vicinity of the stationary point \(x = y = 0 \), you are to:

a) Solve the initial value problem given by the equation(s)

\[
\begin{pmatrix}
\dot{x} \\
\dot{y}
\end{pmatrix} = \begin{pmatrix}
\dot{x} \\
\dot{y}
\end{pmatrix} = A \begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
2 & 5 \\
-1 & -4
\end{pmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix},
\]

subject to the initial condition(s)

\[
\begin{pmatrix}
x_0 \\
y_0
\end{pmatrix} = \begin{pmatrix}
3 \\
-2.999
\end{pmatrix}.
\]

b) Draw the solution field in the vicinity of the stationary point. Draw the solution in the \(x-y \) plane with \(x \) as abscissa (horizontal), \(y \) as ordinate (vertical). You do not need to calculate unit eigenvectors.

c) Orthogonalize the eigenvectors using Gram-Schmidt or any other method you are familiar with (if they are not already orthogonal).

d) Write the equivalent single-equation second order equations for both \(x(t) \) or \(y(t) \). You must include the appropriate initial conditions.