Student	Code	Number	
Diudelli	Couc	1 tullioci	

Department of Mechanical Engineering Michigan State University

Mathematics Ph.D. Qualifying Exam

August, 2021

- Closed book, notes and a non-networked calculator
- All four questions are weighted equally.
- All work and all steps must be shown, if all work is not provided credit will not be given.

Prepared by
Ahmed Naguib
Indrek Wichman

NOTE: LAPLACE TABLES PROVIDED

Possibly useful information for problems 1 and 2:

1. See the attached Laplace Transform tables:

Table 1. Particular-solution forms for constant-coefficient linear ODEs:

f(t)	$y_p(t)$	
	m = 0 is not a root of the characteristic equation	$y_p(x) = A_0 + A_1 t + A_2 t^2 + \dots + A_n t^n$
D.1	m = 0 is a root	$y_p(x) = t(A_0 + A_1 t + A_2 t)$
Polynomial of degree <i>n</i>		$+\cdots + A_n t^n$
	m = 0 is a repeated root	$y_p(x) = t^2 (A_0 + A_1 t)$
		$+A_2t^2+\cdots$
		$+A_nt^n$
	m = k	$y_p(t) = Ae^{kt}$
$f(t) = Ce^{kt}$	m = k is a root	$y_n(t) = Axe^{kt}$
	m = k is a repeated root	$y_p(t) = At^2 e^{kt}$
$g(t) = C\cos(kt)$	m = ik is not a root	$y_p(t) = A\cos(kt)$
		$+ B \sin(kt)$
	m = ik is a root	$y_p(t)$
		$= t(A\cos(kt))$
		$+B\sin(kt)$

3. Fourier Series:

Fourier series of a periodic signal with period 2*T* is given by:
$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{n\pi t}{T} \right) + b_n \sin \left(\frac{n\pi t}{T} \right) \right),$$

where, the expansion coefficients a_0 , a_n , and b_n can be obtained using: $a_0 = \frac{1}{T} \int_{-T}^T f(t) dt,$

$$a_0 = \frac{1}{T} \int_{-T}^T f(t) dt,$$

$$a_n = \frac{1}{T} \int_{-T}^T f(t) \cos\left(\frac{n\pi t}{T}\right) dt,$$

$$b_n = \frac{1}{T} \int_{-T}^T f(t) \sin\left(\frac{n\pi t}{T}\right) dt, \quad n = 1,2,3, \dots$$

4. Partial Fractions:

Let Q(s) have m unrepeated real roots: $a_1, a_2, ..., a_m$. Thus, $Q(s) = (s - a_1)(s - a_2) ... (s - a_m),$

$$Q(s) = (s - a_1)(s - a_2) \dots (s - a_m),$$

then,

$$F(s) = \frac{P(s)}{Q(s)} = \frac{A_1}{s - a_1} + \frac{A_2}{s - a_2} + \dots + \frac{A_m}{s - a_m}.$$

Where,

$$A_i = \lim_{s \to a_i} (s - a_i) F(s)$$

• Let Q(s) have n roots $a_1, a_2, a_3, ..., a_n$, with a_1 repeated m times, then $F(s) = \frac{P(s)}{Q(s)} = \frac{B_m}{(s-a_1)^m} + \dots + \frac{B_2}{(s-a_1)^2} + \frac{B_1}{s-a_1} + \frac{A_2}{s-a_2} + \dots + \frac{A_n}{s-a_n}.$

where,

$$B_{m} = \lim_{s \to a_{1}} \frac{P(s)}{Q(s)} (s - a_{1})^{m},$$

$$B_{m-1} = \lim_{s \to a_{1}} \frac{d}{ds} \left[\frac{P(s)}{Q(s)} (s - a_{1})^{m} \right],$$

$$B_{m-2} = \frac{1}{2} \lim_{s \to a_{1}} \frac{d^{2}}{ds^{2}} \left[\frac{P(s)}{Q(s)} (s - a_{1})^{m} \right],$$

$$B_{m-3} = \frac{1}{3 \times 2} \lim_{s \to a_{1}} \frac{d^{3}}{ds^{3}} \left[\frac{P(s)}{Q(s)} (s - a_{1})^{m} \right],$$

:

$$B_1 = \frac{1}{(m-1)!} \lim_{s \to a_1} \frac{d^{m-1}}{ds^{m-1}} \left[\frac{P(s)}{Q(s)} (s - a_1)^m \right].$$

Possibly useful information & formulas for Problems 3 and 4:

- **1.** Gradient: Also known as the "del" operator, $\vec{\nabla} = \hat{\imath} \frac{\partial}{\partial x} + \hat{\jmath} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$.
- **2.** Partial derivative: If u(x, y) then $\frac{\partial u}{\partial x}$ means taking the derivative of u(x, y) with respect to x while holding y = constant.
- **3.** Total derivative of a field function: $du(x, y, z, t) = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz + \frac{\partial u}{\partial t} dt$.
- **4.** Partial differential equation: A mathematical relation between quantities that are differentiated with respect to several (at least two) different independent variables.

5. Fourier Series:

- (1) Sine series: $f(t) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi t}{T}\right)$; $b_n = \frac{1}{T} \int_{-T}^{T} f(s) \sin\left(\frac{n\pi s}{T}\right) ds$, -T < t < T.
- (2) Cosine series: $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi t}{T}\right)$; $a_n = \frac{1}{T} \int_{-T}^{T} f(s) \cos\left(\frac{n\pi s}{T}\right) ds$, -T < t < T

The **general series** is given in the information for Problems 1 and 2 above.

6. Trigonometric Identities:

- $(1) \sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
- (2) $cos(A \pm B) = cosAcosB \mp sinAsinB$
- 7. <u>Superposition Principle:</u> For a linear PDE the solution $u(x, y, z, t) \equiv u(\vec{x}, t)$ can be written as a *superposition of solutions* $u_1(\vec{x}, t)$, $u_2(\vec{x}, t)$, ... as needed, each component satisfying different BCs.
- **8.** Partial Derivative: If f(x, y, z), the differentiation operation $\partial f/\partial x$ holds y, z constant, $\partial f/\partial y$ holds x, z constant, $\partial f/\partial z$ holds x, y constant.
- **9.** Gram-Schmidt Orthogonalization: $v_i = u_i \sum_{j=1}^{i-1} \frac{u_i \cdot v_j}{v_j \cdot v_j} v_j$, where the v_i and the u_i are vectors.
- **10.** Separation of Variables: For the solution of a partial differential equation for the function $\varphi(x_1, x_2, x_3, t)$ we try $\varphi(x_1, x_2, x_3, t) = \Phi_1(x_1)\Phi_2(x_2)\Phi_3(x_3)\Phi_4(t)$. If this solution works the equations for the component functions Φ_i will be ODEs. In addition, the BC and ICs will sort out properly and the problem will be *well-posed*.

Problem 1: ODE with Periodic Forcing:

Find the general solution of the following ODE:

$$\frac{d^2y}{dt^2} + 8\frac{dy}{dt} + 16y = \frac{1}{2}F(t),$$

where F(t) is a periodic function $F(t) = F(t + 2\pi)$, and

$$F(t) = \begin{cases} t; & -\frac{\pi}{2} < t < \frac{\pi}{2} \\ \pi - t; & \frac{\pi}{2} < t < 3\frac{\pi}{2} \end{cases}$$

Problem 2: ODE with Non-Periodic Forcing:

If F(t) in **Problem 1** is only active for the first period $0 \le t \le 2\pi$ and is zero otherwise, solve **Problem 1** using Laplace Transforms. Assume y(0) = y'(0) = 0, where the prime denotes differentiation with respect to time, $y' = \frac{dy}{dt}$.

Problem 3: PDEs: Consider the two classes of partial differential equations:

$$i) \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2},$$

$$ii) \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2},$$

The physical interval of interest is 0 < x < 1. The boundary conditions are

$$u(0,t) = 1, u(1,t) = 1.$$

- a) Without yet applying any initial condition or conditions, write, for each equation(i) and (ii) the general solution that satisfies the boundary conditions.
- b) Now apply the IC $u(x,0) = 1 + 0.5 sin 2\pi x$ and use the appropriate equation in order to derive your final solution. Do not try to solve the problem for which this IC is a mismatch.
- c) Draw the evolution in time of the final solution. Write the scales on the axes. Does it approach a steady state? Describe the solution.

Problem 4: Second Order System: In the vicinity of the stationary point x = y = 0, you are to:

a) Solve the initial value problem given by the equation(s)

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \dot{\vec{x}} = \vec{A}\vec{x} = \begin{pmatrix} 2 & 5 \\ -1 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},$$

subject to the initial condition(s)

$$\binom{x_o}{y_o} = \binom{3}{-2.999}.$$

- b) Draw the solution field in the vicinity of the stationary point. Draw the solution in the *x*-*y* plane with *x* as abscissa (horizontal), *y* as ordinate (vertical). You do not need to calculate unit eigenvectors.
- c) Orthogonalize the eigenvectors using Gram-Schmidt or any other method you are familiar with (if they are not already orthogonal).
- d) Write the equivalent single-equation second order equations for both x(t) or y(t). You must include the appropriate initial conditions.