\qquad

Department of Mechanical Engineering Michigan State University

Mathematics

Ph.D. Qualifying Exam

August, 2021

- Closed book, notes and a non-networked calculator
- All four questions are weighted equally.
- All work and all steps must be shown, if all work is not provided credit will not be given.

Prepared by

Ahmed Naguib

Indrek Wichman

Possibly useful information for problems 1 and 2:

1. See the attached Laplace Transform tables:
2. Table 1. Particular-solution forms for constant-coefficient linear ODEs:

$f(t)$		$y_{p}(t)$
Polynomial of degree n	$m=0$ is not a root of the characteristic equation	$\begin{aligned} y_{p}(x)=A_{0}+ & A_{1} t+A_{2} t^{2} \\ & +\cdots+A_{n} t^{n} \end{aligned}$
	$m=0$ is a root	$\begin{aligned} y_{p}(x)=t\left(A_{0}\right. & +A_{1} t+A_{2} t \\ & +\cdots \\ & \left.+A_{n} t^{n}\right) \end{aligned}$
	$m=0$ is a repeated root	$\begin{aligned} y_{p}(x)=t^{2}\left(A_{0}\right. & +A_{1} t \\ & +A_{2} t^{2}+\cdots \\ & \left.+A_{n} t^{n}\right) \end{aligned}$
$f(t)=C e^{k t}$	$m=k$	$y_{p}(t)=A e^{k t}$
	$m=k$ is a root	$y_{p}(t)=A x e^{k t}$
	$m=k$ is a repeated root	$y_{p}(t)=A t^{2} e^{k t}$
$g(t)=C \cos (k t)$	$m=i k$ is not a root	$\begin{aligned} & y_{p}(t)=A \cos (k t) \\ & \quad+B \sin (k t) \end{aligned}$
	$m=i k$ is a root	$\begin{aligned} & y_{p}(t) \\ & =t(A \cos (k t) \\ & +B \sin (k t)) \\ & \hline \end{aligned}$

3. Fourier Series:

Fourier series of a periodic signal with period $2 T$ is given by:

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi t}{T}\right)+b_{n} \sin \left(\frac{n \pi t}{T}\right)\right)
$$

where, the expansion coefficients a_{0}, a_{n}, and b_{n} can be obtained using:

$$
\begin{gathered}
a_{0}=\frac{1}{T} \int_{-T}^{T} f(t) d t \\
a_{n}=\frac{1}{T} \int_{-T}^{T} f(t) \cos \left(\frac{n \pi t}{T}\right) d t \\
b_{n}=\frac{1}{T} \int_{-T}^{T} f(t) \sin \left(\frac{n \pi t}{T}\right) d t, n=1,2,3, \ldots
\end{gathered}
$$

4. Partial Fractions:

- Let $Q(s)$ have m unrepeated real roots: $a_{1}, a_{2}, \ldots, a_{m}$. Thus,

$$
Q(s)=\left(s-a_{1}\right)\left(s-a_{2}\right) \ldots\left(s-a_{m}\right),
$$

then,

$$
F(s)=\frac{P(s)}{Q(s)}=\frac{A_{1}}{s-a_{1}}+\frac{A_{2}}{s-a_{2}}+\cdots+\frac{A_{m}}{s-a_{m}} .
$$

Where,

$$
A_{i}=\lim _{s \rightarrow a_{i}}\left(s-a_{i}\right) F(s)
$$

- Let $Q(s)$ have n roots $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$, with a_{1} repeated m times, then

$$
F(s)=\frac{P(s)}{Q(s)}=\frac{B_{m}}{\left(s-a_{1}\right)^{m}}+\cdots+\frac{B_{2}}{\left(s-a_{1}\right)^{2}}+\frac{B_{1}}{s-a_{1}}+\frac{A_{2}}{s-a_{2}}+\cdots+\frac{A_{n}}{s-a_{n}} .
$$

where,

$$
\begin{gathered}
B_{m}=\lim _{s \rightarrow a_{1}} \frac{P(s)}{Q(s)}\left(s-a_{1}\right)^{m}, \\
B_{m-1}=\lim _{s \rightarrow a_{1}} \frac{d}{d s}\left[\frac{P(s)}{Q(s)}\left(s-a_{1}\right)^{m}\right], \\
B_{m-2}=\frac{1}{2} \lim _{s \rightarrow a_{1}} \frac{d^{2}}{d s^{2}}\left[\frac{P(s)}{Q(s)}\left(s-a_{1}\right)^{m}\right], \\
B_{m-3}=\frac{1}{3 \times 2} \lim _{s \rightarrow a_{1}} \frac{d^{3}}{d s^{3}}\left[\frac{P(s)}{Q(s)}\left(s-a_{1}\right)^{m}\right], \\
B_{1}=\frac{1}{(m-1)!} \lim _{s \rightarrow a_{1}} \frac{d^{m-1}}{d s^{m-1}}\left[\frac{P(s)}{Q(s)}\left(s-a_{1}\right)^{m}\right] .
\end{gathered}
$$

;

Possibly useful information \& formulas for Problems 3 and 4:

1. Gradient: Also known as the "del" operator, $\vec{\nabla}=\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}$.
2. Partial derivative: If $u(x, y)$ then $\frac{\partial u}{\partial x}$ means taking the derivative of $u(x, y)$ with respect to x while holding $y=$ constant .
3. Total derivative of a field function: $d u(x, y, z, t)=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z+\frac{\partial u}{\partial t} d t$.
4. Partial differential equation: A mathematical relation between quantities that are differentiated with respect to several (at least two) different independent variables.

5. Fourier Series:

(1) Sine series: $f(t)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi t}{T}\right) ; b_{n}=\frac{1}{T} \int_{-T}^{T} f(s) \sin \left(\frac{n \pi s}{T}\right) d s,-T<t<T$.
(2) Cosine series: $f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi t}{T}\right)$; $a_{n}=\frac{1}{T} \int_{-T}^{T} f(s) \cos \left(\frac{n \pi s}{T}\right) d s,-T<t<$ T.

The general series is given in the information for Problems 1 and 2 above.
6. Trigonometric Identities:
(1) $\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
(2) $\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
7. Superposition Principle: For a linear PDE the solution $u(x, y, z, t) \equiv u(\vec{x}, t)$ can be written as a superposition of solutions $u_{1}(\vec{x}, t), u_{2}(\vec{x}, t), \ldots$ as needed, each component satisfying different BCs.
8. Partial Derivative: If $f(x, y, z)$, the differentiation operation $\partial f / \partial x$ holds y, z constant, $\partial f / \partial y$ holds x, z constant, $\partial f / \partial z$ holds x, y constant.
9. Gram-Schmidt Orthogonalization: $v_{i}=u_{i}-\sum_{j=1}^{i-1} \frac{u_{i} \cdot v_{j}}{v_{j} \cdot v_{j}} v_{j}$, where the v_{i} and the u_{i} are vectors.
10. Separation of Variables: For the solution of a partial differential equation for the function $\varphi\left(x_{1}, x_{2}, x_{3}, t\right)$ we try $\varphi\left(x_{1}, x_{2}, x_{3}, t\right)=\Phi_{1}\left(x_{1}\right) \Phi_{2}\left(x_{2}\right) \Phi_{3}\left(x_{3}\right) \Phi_{4}(t)$. If this solution works the equations for the component functions Φ_{i} will be ODEs. In addition, the BC and ICs will sort out properly and the problem will be well-posed.

Problem 1: ODE with Periodic Forcing:

Find the general solution of the following ODE:

$$
\frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}+16 y=\frac{1}{2} F(t)
$$

where $F(t)$ is a periodic function $F(t)=F(t+2 \pi)$, and

$$
F(t)=\left\{\begin{array}{cc}
t ; & -\frac{\pi}{2}<t<\frac{\pi}{2} \\
\pi-t ; & \frac{\pi}{2}<t<3 \frac{\pi}{2}
\end{array}\right.
$$

Problem 2: ODE with Non-Periodic Forcing:

If $F(t)$ in Problem 1 is only active for the first period $0 \leq t \leq 2 \pi$ and is zero otherwise, solve Problem 1 using Laplace Transforms. Assume $y(0)=y^{\prime}(0)=0$, where the prime denotes differentiation with respect to time, $y^{\prime}=\frac{d y}{d t}$.

Problem 3: PDEs: Consider the two classes of partial differential equations:

$$
\begin{aligned}
& \text { i) } \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \\
& \text { ii) } \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
\end{aligned}
$$

The physical interval of interest is $0<x<1$. The boundary conditions are

$$
u(0, t)=1, u(1, t)=1
$$

a) Without yet applying any initial condition or conditions, write, for each equation (i) and (ii) the general solution that satisfies the boundary conditions.
b) Now apply the IC $u(x, 0)=1+0.5 \sin 2 \pi x$ and use the appropriate equation in order to derive your final solution. Do not try to solve the problem for which this IC is a mismatch.
c) Draw the evolution in time of the final solution. Write the scales on the axes. Does it approach a steady state? Describe the solution.

Problem 4: Second Order System: In the vicinity of the stationary point $x=y=0$, you are to:
a) Solve the initial value problem given by the equation(s)

$$
\binom{\dot{x}}{\dot{y}}=\dot{\vec{x}}=\vec{A} \vec{x}=\left(\begin{array}{cc}
2 & 5 \\
-1 & -4
\end{array}\right)\binom{x}{y},
$$

subject to the initial condition(s)

$$
\binom{x_{o}}{y_{o}}=\binom{3}{-2.999}
$$

b) Draw the solution field in the vicinity of the stationary point. Draw the solution in the $x-y$ plane with x as abscissa (horizontal), y as ordinate (vertical). You do not need to calculate unit eigenvectors.
c) Orthogonalize the eigenvectors using Gram-Schmidt or any other method you are familiar with (if they are not already orthogonal).
d) Write the equivalent single-equation second order equations for both $x(t)$ or $y(t)$. You must include the appropriate initial conditions.

