Due to the COVID-19 pandemic, ME 372-Machine Tool Laboratory, a Manufacturing Concentration requirement, is one of only two on-campus undergraduate courses this semester (the other is ME 425). Note the masks, plastic screen, and social distancing. Pictured are Cody Zorn, Anthony Su, and Delano Dalfonsi.
ME Juniors & Seniors Select Dr. Allison for the 2020 Withrow Award!

Professor Patton Allison received the 2020 Withrow Teaching Excellence Award last spring. He was presented with an inscribed plaque, a medallion, and a small stipend. Each year a committee consisting of student representatives from ASME and Pi Tau Sigma reviews nominations from ME juniors and seniors and makes the selection.

Dr. Allison, assistant professor in the Department of Mechanical Engineering, has been a driving force behind the success and popularity of the undergraduate concentration in aerospace engineering. “Knowledgeable and passionate” are just two of the traits most commonly cited by his students. Dr. Allison joined the ME department in 2017 and directs the Advanced Diagnostics and Combustion Lab, a place to start fires, shoot lasers, take pictures and learn about fire and flames. Some of his students are headed to graduate school because of his important influence on them. Those who are entering the aerospace industry directly after graduating feel that they are truly prepared for that experience because of the way in which he has guided their progress and depth of understanding.

As one student said: “he is a dedicated professor who truly explains his courses,” allowing his students to see not only the information that needs to be learned but its connection to the practice of engineering. He is available and enthusiastic to engage students in learning beyond the required course material. Students consistently comment that “he really cares about his students and the subjects he teaches. His passion provides the necessary platform for students to enjoy learning.”

This semester Dr. Allison is teaching ME 440. He is passionate about cooking, mixology, and learning about food science. In addition, he enjoys travel and film.
Deadline: Nov 13

Tutoring

• The ME Learning Center (https://me.msu.edu/me-learning-center) has free mentors for ME 201, 222, and 361. It is open at 6-10 p.m. on Sunday through Thursday.

• Paid Undergraduate Tutors are available for many ME courses. Students in need of tutoring help for a particular course are matched with fellow students who have performed well in that course. Payment is negotiated privately between the tutor and the student within appropriate limits. For help, go to: https://sites.google.com/view/msutbp-pts-tutoring-database/home

• The Guided Learning Center (GLC) offers free drop in tutoring in math up to differential equations, science courses (chemistry, physics, etc.), and many core engineering courses. To request assistance, go to: https://www.egr.msu.edu/dpo/academics/guided-learning-center [Scroll down and click on application form]

• The Cornerstone & Residential Experience (CoRe) Program offers free tutoring on Sunday through Thursday from 6 - 10 pm. It provides help for MTH 132, 133; 234, and 235, CEM 141, and PHY 183 and 184. It is located here: https://core.egr.msu.edu/#section3 [Scroll down to CoRe Tutoring]

• ME Graduate Student Tutors can be contacted through the ME Advising Office. These tutors charge a fee, which you can negotiate with them. If you are interested, email Gaile Griffore at griffore@egr.msu.edu

History of the Withrow Teaching Excellence Award

Prior to 1991, ME was the only department in the College of Engineering with an annual teaching award, and it was called the ME Outstanding Faculty Award. In 1991 ME alumnus Jack Withrow and his wife Dortha endowed the award and made it available to all engineering departments. The name was changed to the Withrow Teaching Excellence Award. The Withrows also endowed several additional awards to recognize distinguished scholarship and service by engineering faculty and staff. Here is a list of past teaching award recipients, including those who transferred to ME from the old Materials Science and Mechanics (MSM) department in 2001:

1984 Ronald Rosenberg
1985 Charles St. Clair
1986 Merle Potter
1987 Craig Somerton
1988 Ronald Rosenberg
1989 Charles St. Clair
1990 Alan Haddow
1991 Manooch Koochesfahani
1992 John McGrath
1993 Rob Hubbard (MSM)
1994 Alex Díaz
1995 John Foss
1996 Alan Haddow
1997 Tom Koon (MSM)
1998 Craig Somerton
1999 Indrek Wichman
2000 Donald Rosenberg
2001 John Koon
2002 Farhang Pourboghrat
2003 Clark Radcliffe
2004 Gary Cloud
2005 Ahmed Nagi
2006 Ranjan Mukherjee
2007 Shubhadeep Mukherjee
2008 Giles Breerton
2009 Tonglu Lee
2010 Indrek Wichman
2011 Scott Kiefer
2012 Laura Genik
2013 Brian Thompson

Tutoring

• The ME Learning Center (https://me.msu.edu/me-learning-center) has free mentors for ME 201, 222, and 361. It is open at 6-10 p.m. on Sunday through Thursday.

• Paid Undergraduate Tutors are available for many ME courses. Students in need of tutoring help for a particular course are matched with fellow students who have performed well in that course. Payment is negotiated privately between the tutor and the student within appropriate limits. For help, go to: https://sites.google.com/view/msutbp-pts-tutoring-database/home

• The Guided Learning Center (GLC) offers free drop in tutoring in math up to differential equations, science courses (chemistry, physics, etc.), and many core engineering courses. To request assistance, go to: https://www.egr.msu.edu/dpo/academics/guided-learning-center [Scroll down and click on application form]

• The Cornerstone & Residential Experience (CoRe) Program offers free tutoring on Sunday through Thursday from 6 - 10 pm. It provides help for MTH 132, 133; 234, and 235, CEM 141, and PHY 183 and 184. It is located here: https://core.egr.msu.edu/#section3 [Scroll down to CoRe Tutoring]

• ME Graduate Student Tutors can be contacted through the ME Advising Office. These tutors charge a fee, which you can negotiate with them. If you are interested, email Gaile Griffore at griffore@egr.msu.edu

History of the Withrow Teaching Excellence Award

Prior to 1991, ME was the only department in the College of Engineering with an annual teaching award, and it was called the ME Outstanding Faculty Award. In 1991 ME alumnus Jack Withrow and his wife Dortha endowed the award and made it available to all engineering departments. The name was changed to the Withrow Teaching Excellence Award. The Withrows also endowed several additional awards to recognize distinguished scholarship and service by engineering faculty and staff. Here is a list of past teaching award recipients, including those who transferred to ME from the old Materials Science and Mechanics (MSM) department in 2001:

1984 Ronald Rosenberg
1985 Charles St. Clair
1986 Merle Potter
1987 Craig Somerton
1988 Ronald Rosenberg
1989 Charles St. Clair
1990 Alan Haddow
1991 Manooch Koochesfahani
1992 John McGrath
1993 Rob Hub bard (MSM)
1994 Alex Díaz
1995 John Foss
1996 Alan Haddow
1997 Tom Koon (MSM)
1998 Craig Somerton
1999 Indrek Wichman
2000 Donald Rosenberg
2001 John Koon
2002 Farhang Pourboghrat
2003 Clark Radcliffe
2004 Gary Cloud
2005 Ahmed Nagi
2006 Ranjan Mukherjee
2007 Shubhadeep Mukherjee
2008 Giles Breerton
2009 Tonglu Lee
2010 Indrek Wichman
2011 Scott Kiefer
2012 Laura Genik
2013 Brian Thompson

Academic Advising

1) ME Juniors and Seniors are advised by Gaile Griffore. For an appointment, call 517-355-3338.

2) ME Sophomore Juniors-to-Be with a 3.1 or higher GPA are advised by Gaile Griffore. For an appointment, call 355-3338.

3) ME Sophomores who do not fit the criteria in number 2 above are advised by Jeffrey Tsang. Schedule an appointment with him at: https://login.msu.edu/?App=ShibbSSC-GradesFirst

4) ME Freshmen are advised by Jeffrey Tsang. Schedule an appointment with him at: https://login.msu.edu/?App=ShibbSSC-GradesFirst

Friday, December 11, 2020
Come and see our students lead, create, and innovate

➢ Competitions
➢ Demonstrations
➢ Presentations
➢ Awards
Dr. Cloud Receives Honor

Professor Gary Cloud, P.E., has been elected to the status of “Honorary Member” in the Society for Experimental Mechanics, a singular honor. The Society’s definition of an Honorary Member is: “...an individual of widely recognized eminence in some field in which the Society has interest, and who has also rendered exceptional and sustained service to the Society. An Honorary Member shall be exempt from paying membership dues or fees to attend Society-sponsored events and shall have the same rights and privileges as a Regular Member. Individuals shall be selected for this honor by action of the Executive Board.”

University Distinguished Professor Cloud joined the faculty of the MSU College of Engineering 59 years ago, and he continues to conduct research part-time in the MSU Composite Vehicle Research Center, of which he is Founding Director Emeritus. He has served as an engineering consultant to many firms, and he also has been Faculty Advisor of the MSU Formula SAE Racing Team for 25 years.

Dr. Cloud’s B.S. and M.S. degrees were obtained at Michigan Technological University, his Ph.D. was bestowed by MSU, and he pursued advanced study in optics at Imperial College, London, U.K. He is a licensed Professional Engineer and Chartered Physicist as well as a Fellow of the Society for Experimental Mechanics and the Institute of Physics.

Dr. Cloud’s research interests bring together innovative optical and electronic techniques of experimental mechanics plus analytical mechanics to solve problems in geomechanics, biomechanics, composites, fracture mechanics, fastening, nondestructive evaluation, and structural design. He has written extensively on these topics, including the book Optical Methods of Engineering Measurement and several handbook chapters. He holds 5 patents. Further details may be found at: www.egr.msu.edu/~cloud

PHOTO PROVIDED BY DR. CLOUD

Dr. Cloud is shown in the MSU Composite Vehicle Research Center where he continues to conduct his research.

Curriculum News

Co-op Students: Before you leave for your Spring 2021 co-op rotation, be sure to discuss your schedule for next Fall 2021 / Spring 2022 with your academic advisor.

ME 451—Control Systems & ME 481—ME Design Projects require department approval before you can enroll. If you have an accurate long-term schedule on file in the ME Advising Office, request approval by submitting the following forms:

• ME 451—https://me.msu.edu/me-451-enrollment-approval-form

• ME 481—https://www.egr.msu.edu/me/me481-approval-form

If you do not have an accurate long-term schedule on file, schedule an appointment with Gaile by calling 517-355-3338.

Class Standing. ME juniors and seniors can obtain this information by emailing Gaile at griffore@egr.msu.edu. Be sure to use your MSU email address.

Job Search Advice: The Center is available to answer questions about your job search. To ask a question or schedule an appointment, email the office at: careers@egr.msu.edu

Prerequisites: The ME department expects all students, including members of the Honors College, to observe all course prerequisite requirements. If you have a question about prerequisites, contact the ME Advising Office.
Dean’s List

Congratulations to these 557 ME majors who made the Dean’s List after Spring and Summer 2020. To be on the Dean’s List, you must have a semester GPA of 3.5 or better. This list is from September 25. For updates, go to: http://www.reg.msu.edu/ROINfo/GradHonor/DeansList.aspx

The past few years have seen tremendous interest and growth in soft robots with promise of versatile locomotion and dexterous manipulation as demonstrated by biological organisms, like octopuses, starfish, jellyfish, snakes, and caterpillars. These robots have an array of exciting potential applications in search and rescue, elder care, minimally invasive surgery, rehabilitation and performance-augmentation, and handling of delicate objects. In particular, robots equipped with multiple soft arms, termed Soft Multi-Arm RoboT, or SMART, could play a prominent cooperative or assistive role in versatile applications involving interactions with humans. The compliance and thus the intrinsic safety offered by soft robotic arms make them ideal for working with humans.

However, realizing the aforementioned applications for SMARTs poses significant challenges, including simultaneous control of deformation and stiffness tuning, planning and coordination of multiple soft robotic arms, efficient perception system for scene understanding, and human-robot interaction design. MSU ME professor Zhaojian Li is teaming up with MSU professors Xiaobo Tan, Vaibhav Srivastava, and Changyong Cao, as well as USDA research leader Dr. Renfu Lu. In their funded 4-year NSF National Robotics Initiative (NRI) project, the team will conduct multidisciplinary research to convergently address fundamental challenges in realizing SMART (see Fig. 1 for the project paradigm) and enable their wide adoption in applications involving close collaboration with humans.

In particular, this project will design cable-driven, stiffness-tunable robotic arms, soft grippers capable of nimble grasping, and integrated sensors for the arms and grippers to realize simultaneous actuation and stiffness tuning and enable dexterous manipulation. For efficient motion planning and control of soft multi-arm robots to enable robust manipulation in 3D space in the presence of stationary and dynamic obstacles, data-driven, control-oriented dynamic modeling of soft robotic arms under loading on a low-dimensional configuration space will be developed using tools such as variational autoencoders and Koopman operators, and sampling-based efficient planning of multiple arms. To foster human-robot collaboration, trust-based human-robot interaction will be developed by explicitly accommodating the dynamics of human trust in the SMART. This project will develop models for human trust dynamics, workload dynamics, and human behavior, and the use of these models for synthesizing the policies for the soft robot based on a partially observed Markov decision process (POMDP) framework.

The developed SMART system will be extensively evaluated in a running case study – collaborative SMART-human apple harvesting. Fruit harvesting is highly labor-intensive and cost-heavy; it is estimated that the labor needed for apple harvesting alone is more than 10 million worker hours per year, attributing to 15% of the total production cost in U.S. Furthermore, manual picking activities constitute great risks of back strain and musculoskeletal pain for fruit pickers due to repetitive hand motions, awkward postures when picking fruits at high locations or deep in the canopy, and ascending and descending on ladders with heavy loads. Therefore, the SMART system, in collaboration with humans, will provide a compelling solution.
Let’s Focus on Liking

ZOOM by Craig Gunn, Director of Communications

In this time of ZOOM, we should be looking at the positive aspects of the use of this form of communication instead of spending an inordinate amount of time complaining about our perceptions of how much we hate ZOOM. Let’s rather consider that ZOOM could provide us with a great deal of important information about our continuous need to communicate.

So where do we start? How about the simple issue of what we are wearing during the Zoom. Pajamas, underwear, or last week’s sweatshirt? It’s casual so who cares? Well, this is still a professional operation and we should consider what it is that we are trying to convey – our professionalism! Dress up. Don’t dress down. Our audience doesn’t really want to see us in an old t-shirt. They take confidence in our appearance.

Secondly, how about a well-rehearsed presentation that considers the time we are given and how we utilize that time. If you have 50 minutes to present, don’t take 63 minutes. Too much material means that you rush your presentation and that doesn’t present well with your audience. If you prepare your presentation and have it critiqued by a number of your peers, then you have a greater chance of really coming across as the expert, which you should be since it is your information.

Thirdly, since ZOOM may be with us for a long time and future employers, colleagues, and agencies providing grants may find ZOOM to be a great way to communicate, perhaps it is best that we all make the best use of it and make it work for us. Practice what you have to say, look carefully at how you look on screen, and get a confidence to be ready at a moment’s notice to perform ZOOM wise. ZOOM is not going away. Use it to your best advantage!!

Overall, the new designs and methodologies from this project will enable safe, efficient, and robust cooperation between multiple soft robot arms and humans. The soft multi-arm robot system can not only improve production efficiency (for example, in assisting fruit harvesting), but also contribute to meeting the nation’s urgent need to take care of the elderly population (for example, in elder care and assisted living).

to tackling labor shortage, lowering human injury risks, and improving productivity and profitability of the fruit industry. Building upon Professor Zhaojian Li’s existing research on robotic apple harvesting with rigid robots (see Fig. 2), this project will further enhance orchard perception algorithms and replace rigid robots with soft robots to improve dexterity and reduce bruises.

Fig. 2: Robotic apple harvesting platform developed at Prof. Zhaojian Li’s lab.
About Cryogenic Engineering by Professor Peter Knudsen

Cryogenic engineering involves the mechanical and thermal-fluids design of systems that operate at temperatures from liquefied natural gas down to helium (from -260 to -452 degrees Fahrenheit).

These systems are necessary nationally and internationally for the aerospace, industrial gas, and power industries, and for government and private organizations performing sub-atomic particle and low-temperature research. To design such systems, it is necessary to understand non-ideal fluid and material properties. In addition, thermal-mechanical optimization and integration is inherent in their design.

MSU’s College of Engineering and its Mechanical Engineering Department, in collaboration with the Facility for Rare Isotope Beams (FRIB) at MSU, offer three cryogenic engineering courses to introduce students to various aspects of the field. Available courses:

ME 414 - Mechanical Design of Cryogenic Systems is offered during fall semesters. It focuses on:
- Mechanical design of cryogenic piping systems
- Analysis of stresses due to process conditions such as pressure, temperature, and momentum
- Optimization and trade-off of the thermal and mechanical design
- Incorporation of non-constant material properties
- ASME design codes (to give students an understanding of what is required in the industry)

ME 413 - Cryogenic Thermal Systems is offered during spring semesters. It focuses on:
- Thermodynamics of cryogenic process cycles
- Ideal cycles and real cycles
- The concept of exergy (or availability)
- Modeling of components
- Cryogenic distillation (how gas mixtures with boiling points substantially below the environment are separated)
- Vacuum systems (integral to the thermal insulation)
- Instrumentation

Every other fall, the graduate class, ME 940 - Cryogenic Process Engineering, is offered. This class continues where the previous two classes left off, focusing in greater detail on the thermal-fluid process design and analysis aspects of cryogenic systems. The next course is planned for Fall 2022.

The MSU Cryogenic Initiative (frib.msu.edu/cryoinitiative) is a collaboration between FRIB and MSU’s College of Engineering. It offers opportunities for graduate students interested in applied research in cryogenic engineering. Contact Dr. Venkatarao Ganni (ganni@frib.msu.edu), Dr. Pete Knudsen (knudsen@frib.msu.edu), or Dr. Nusair Hasan (hasann@frib.msu.edu) for more information.

Temperature-entropy diagram for FRIB’s Central Helium Liquefier (CHL)

Simplified schematic of FRIB’s Central Helium Liquefier (CHL)

FRIB’s Sub-atmospheric Cold Box (SCB) which houses five cryogenic centrifugal compressors necessary to achieve 2 Kelvin.
Deadline: Nov 13

99 Seniors to Graduate in December!

Congratulations to all mechanical engineering December graduates! On behalf of the ME faculty, I wish you the greatest happiness and success in your careers, graduate studies, and personal lives. The following students had applied for graduation by October 16. If your name is missing, please contact me immediately (Email Gaile at <griffore@egr.msu.edu> Tele: 517-355-3338).

Ahmed Abdulla Alhosani
Evan Joseph Alvanas
Matthew Allen Archambo
Joseph Daniel Auty
Artea Azizi
Ryan William Babiartz
William Gregory Book
Jonathan James Borgiel
Michael Anthony Brannon
Nathan Foster Buchweitz
Kevin Mark Carlson
Alena Isabella Chapdelaine
Evan Robert Chechack
Paul Chen
Yuxin Chen
Jeremy Andrew Coleman
Mathias Pierre-Yves Cornet
Matthew Gregory Covert
Bradley D Davis
Tyler John Davis
David Carl Demeo
Antonino Salvatore Destasi
Andrew David Dolenga
Noah Evan Dudley
Parker Allan Dukus
Kyle Franklin Evans
Michael John Faber
Dominick Anthony Ferro
Mathew Robert Flegel
Alexis Renee French
Brett Thomas Hahne
Andrew Byron Thomas Hallam
David Kenneth Harris
Paige Alexandra Hartman
Max Paul Herzog
Zachary Douglas Hoffman
Trevor Alan Hofman
Rhylan Andrew Huss
Jillian M Jakubiec
Brendan Steven Jones
Jacob Emerson Jaywook
Caleb Michael Karthabortles
Scott Michael Kelley
Matthew Tyler Koenig
Tyler Nishii Koizumi
Patrick Michael Korte
Cameron Donald Lewis
Boyuan Li
Collin Paul Lynch
Emma Sophia Malik

Cryogenic Concentration Requirements

A mechanical engineering degree with the cryogenic engineering concentration signifies the interests and expertise of students in thermal and mechanical analysis and design techniques as applied to cryogenic engineering applications.

To complete a Bachelor of Science degree in mechanical engineering with an engineering mechanics concentration, students must complete the requirements for the B.S. degree, including the following 12 credits:

• ME 413 Cryogenic-Thermal Systems 3 credits (Spring Only)

• ME 414* Mechanical Design of Cryogenic Systems 3 credits (Fall Only)

• ME 416* Computer Aided Design of Thermal Systems 3 credits (Fall Only)

• ME 442* Turbomachinery 3 credits (Spring Only)

CREDIT DISTRIBUTION:

The 12 credits in the concentration will fulfill the Senior Elective requirement, including the “design intensive” course component. Completion of the option will be noted on the final transcript. The asterisk (*) signifies that the course is design intensive.
For the last thirty years, Michigan State Formula Racing has proudly represented the Spartan community in Formula SAE, the world’s largest collegiate design series. Every year, teams are challenged to build a small, open wheel race car from the ground up.

Recently, the team’s work has looked a little different. Despite last year’s car, SR-20, running and driving in early March, it became evident that the competition landscape would look very different for the 2020-2021 season. The beginning of last year’s testing schedule had both started and ended within a week, and suddenly the team was without access to the machine shop. Instead of wallowing in defeat and giving up on attending a competition, optimistic team leaders immediately began brainstorming how they can make State Racing vehicles better for the next opportunity to show the world what Spartan engineers can do.

Leaders took the cards that they were dealt and came up with a new plan: one where they can perfect the team’s current platform, while also developing a brand-new one for the future. By utilizing a completely redesigned carbon fiber monocoque and steel spaceframe chassis, the team will be able to integrate an electrified powertrain while using the base internal-combustion platform. Extra design time afforded by the pandemic has allowed team leadership to extend deadlines, which allows leaders to spend more time on tasks that may have been overlooked during a typical design cycle. The team is excited to show the world what we can do, and to succeed despite limitations imposed by COVID-19! Go green, go white, and most importantly, go fast!

Keep up with our progress: @msuformularacing on Instagram and Facebook Submitted by Noah Goldman, Colling Project Lead

Undergraduate Program Educational Objectives
Department of Mechanical Engineering
Michigan State University
(Approved by the ME Department Faculty on December 10, 2015)

Our graduates will:
• Be competent and ethical engineers practicing in a diverse range of activities.
• Use their mechanical engineering education as a stimulus for personal and professional growth.
• Be recognized for their capability, creativity, and application of knowledge.
• Be independent and critical thinkers who identify problems and develop effective solutions.
SPRING SEMESTER SENIOR ELECTIVES

The asterisk (*) after a course number indicates that it has been officially designated as “Design Intensive.” The instructor information is subject to change.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 413</td>
<td>Cryogenic-Thermal Systems</td>
<td>(3-0)</td>
<td>ME 410 or concurrently</td>
<td>Hasan/Knudsen</td>
</tr>
<tr>
<td>ME 417*</td>
<td>Design of Alternative Energy Systems</td>
<td>(3-0)</td>
<td>ME 410 or concurrently</td>
<td>Yuan</td>
</tr>
<tr>
<td>ME 426</td>
<td>Introduction to Composite Materials</td>
<td>(3-0)</td>
<td>ME 222</td>
<td>Xiao</td>
</tr>
<tr>
<td>ME 433</td>
<td>Introduction to Computational Fluid Dynamics</td>
<td>(3-0)</td>
<td>ME 410 or concurrently</td>
<td>Gao</td>
</tr>
<tr>
<td>ME 441</td>
<td>Aerodynamics and Aircraft Performance</td>
<td>(3-0)</td>
<td>ME 332</td>
<td>Allison</td>
</tr>
<tr>
<td>ME 442*</td>
<td>Turbomachinery</td>
<td>(3-0)</td>
<td>ME 332</td>
<td>Mueller</td>
</tr>
<tr>
<td>ME 445*</td>
<td>Automotive Powertrain Design</td>
<td>(3-0)</td>
<td>ME 444</td>
<td>Schock</td>
</tr>
<tr>
<td>ME 456*</td>
<td>Mechatronic System Design</td>
<td>(2-3)</td>
<td>ECE 345 or concurrently and ME 391 or concurrently</td>
<td>Zhu</td>
</tr>
<tr>
<td>ME 464</td>
<td>Intermediate Dynamics</td>
<td>(3-0)</td>
<td>ME 361</td>
<td>Recktenwald</td>
</tr>
<tr>
<td>ME 465*</td>
<td>Computer Aided Optimal Design</td>
<td>(3-0)</td>
<td>ME 222 and ME 280</td>
<td>Averill</td>
</tr>
<tr>
<td>ME 477</td>
<td>Manufacturing Processes</td>
<td>(3-0)</td>
<td>ME 222 and MSE 250</td>
<td>Guo</td>
</tr>
<tr>
<td>ME 478*</td>
<td>Product Development</td>
<td>(3-0)</td>
<td>ME 477</td>
<td>Kwon</td>
</tr>
<tr>
<td>ME 490</td>
<td>Independent Study</td>
<td>1-4 credits</td>
<td>See Override Instruction #2 below. You may reenroll for a maximum of 6 credits.</td>
<td></td>
</tr>
<tr>
<td>ME 491*</td>
<td>Selected Topics in Mechanical Engineering</td>
<td>Section 001 (1 credit): Integrated Systems Design.</td>
<td>See Override Instruction #1 below. Students should consider taking this course for three semesters to receive a total of 3 credits and fulfill the design intensive senior elective requirement. This is a project based course and students should be available outside of class for team meetings, project work, and design reviews. Prereq: None. Recktenwald/Resh.</td>
<td></td>
</tr>
<tr>
<td>ME 495</td>
<td>Tissue Mechanics</td>
<td>(3-0)</td>
<td>ME 222</td>
<td>Grimm</td>
</tr>
<tr>
<td>BE 444</td>
<td>Biosensors for Medical Diagnostics</td>
<td>(3-0)</td>
<td>BS 161 and CEM 141 and ECE 345</td>
<td>Alocilja</td>
</tr>
<tr>
<td>CE 407</td>
<td>Materials Engineering: Properties, Selection and Processing</td>
<td>(3-0)</td>
<td>CE 221 and ME 222. Recommended Background: MSE 250, Lu.</td>
<td></td>
</tr>
<tr>
<td>CHE 483</td>
<td>Brewing and Distilled Beverage Technology</td>
<td>(2-2)</td>
<td>ME 332</td>
<td>Pokrhel</td>
</tr>
<tr>
<td>ENE 422</td>
<td>Applied Hydraulics</td>
<td>(3-2)</td>
<td>ME 332</td>
<td>Eisenlohr</td>
</tr>
<tr>
<td>MSE 465</td>
<td>Design & Application of Engineering Materials</td>
<td>(3-0)</td>
<td>MSE 250</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Level Courses: Honors College members and/or students with 3.5+ GPAs might consider taking a graduate course as a senior elective. Before enrolling, several signatures, including that of the instructor, are required. Possible choices for Spring 2021 include ME 814, 825, 861, and 872. See Override Instruction #4 below.

SENIOR ELECTIVE OVERRIDE INSTRUCTIONS

1. **General Override Request Procedure**: Complete and submit the ME Override Request Form: https://www.egr.msu.edu/me/me-override-request Please note that the ME department cannot overfill required courses to resolve conflicts with Senior Electives, Other Electives, Integrative Studies courses and employment schedules.

2. **ME 490–Independent Study Enrollment Procedure**: Find a professor who is willing to supervise your independent study, and discuss your plans with him/her. Complete an ME 490/490H Enrollment Contract (independent study form), available in the ME Advising Office in 2560 EB. After you and your professor have completed and signed both sides, return the form to the ME Advising Office for the remaining signatures, override, and enrollment.

3. **CHE 483** - This course has a maximum enrollment of 100. When it is full, no additional overrides will be given. You can still set an alert via Schedule Builder, but it would be a good idea to enroll in a back-up course.

4. **Complete the Graduate Course Override form**, which can be obtained from Gaile (griffore@egr.msu.edu). This is a PDF form that must be printed, signed, and sent back to Gaile.
Fall Semester Calendar

November 13 All currently enrolled students who have not enrolled by 8 p.m. in at least one course for Spring will pay a $50 late fee.

November 13 **Deadline for Withrow Teaching Award Nominations.** The nomination form is on the ME website (https://www.egr.msu.edu/me). [Click on Undergraduate, and then Forms and Policies.]

November 13 Deadline for Withrow Teaching Award Nominations. The nomination form is on the ME website (https://www.egr.msu.edu/me). [Click on Undergraduate, and then Forms and Policies.]

Nov 26-27 Thanksgiving recess

December 11 **Last day of classes & Design Day.**

December 19 Virtual Undergrad Commencement Ceremony-10 a.m.

Dec 14-18 Final Exams

Dec 15-Jan 10 Semester Break

January 15 On-line Open Add Period for Spring 2021 ends at 8 p.m. **Also,** this is the deadline for May 2021 and August 2021 graduates to apply for graduation and have their names printed in the commencement program.

March 15 Scheduled Computer/Telephone Enrollment period for summer semester begins.

April 2 Computer Enrollment period for fall/spring 2021-2022 begins. Your enrollment access date will be posted on StuInfo in mid-March.

MSU is an affirmative action, equal opportunity employer. MSU is committed to achieving excellence through cultural diversity. The university actively encourages applications and/or nominations of women, persons of color, veterans and persons with disabilities.