Department of Mechanical Engineering

Michigan State University

Intermediate Solid Mechanics
Ph.D. Qualifying Examination

January 2017

You may use only one reference book.

All Questions are weighted equally

Prepared by

Alfred C. Loos

Xinran (Sharon) Xiao

Network Devises Are Not Allowed
All Work Should Be Shown For Full Credit
1) Consider a long, thin steel plate of thickness \(t \), width \(2h \) and length \(2a \). The plate is subjected to loads that produce the uniform stresses \(\sigma_0 \) at the ends and a temperature change \(T_1 \). The edges at \(y = \pm h \) are placed between the two rigid walls. Show that, by using an inverse method the displacements are expressed by:

\[
\begin{align*}
 u &= \left[-\frac{1}{E} \left(1 - \nu^2 \right) \sigma_0 + (1 + \nu) \alpha T_1 \right] x; \quad \nu = 0 \\
 w &= \left[\frac{1}{E} \left(1 + \nu \right) \sigma_0 + (1 + \nu) \alpha T_1 \right] z
\end{align*}
\]

Hint: Assume that \(\sigma_x = -\sigma_0 \).
2) A 3-m by 1-m by 2-m parallelepiped is deformed by movement of corner A to A' (2.9995, 1.0003, 1.9994), as shown in the figure. Using the displacement field given below, calculate (a) the strain components ε_x, ε_z, and γ_{xz} at point A and (b) the normal strain ($\varepsilon_{x'}$) in the direction of line BA (x'-axis lies along a line from B to A). (20)

\[u = c_{1xyz} \quad v = c_{2xyz} \quad w = c_{3xyz} \]
3). These stresses are acting on the cube: \(\sigma_x = 5\text{MPa} \), \(\sigma_y = 10\text{MPa} \), \(\tau_{xy} = -6\text{MPa} \), \(\sigma_z = -4\text{MPa} \). (a) Indicate the stress components on the cube. (b) Determine the principal stresses and maximum shear stress.
4). A beam with cross section as shown is subjected to a bending moment $M_y = 100 \times 10^3$ lb-in passing through its centroid. Determine the maximum stress on the section.