Code N	0.	

Ph.D. Qualifier Exam — Fluid Mechanics

Department of Mechanical Engineering
Michigan State University

January 2004

Directions:

One open book permitted

All problems carry equal weight.

Exam prepared by Profs. Brereton and Foss

- (35) 1. This problem involves several aspects of a common flow system.
- (10) a) Atmospheric air (STP) enters the piping system under the action of the large centrifugal fan. (The inlet and outlet diameters of the piping system are D_1 and D_2). The flow rate: q=0.736 m³/sec, is delivered to a plenum chamber at a pressure level of 1.5KPa by the fan. See part (b) for the "plenum" whose definition is: *plenum*: "a condition in which the pressure of the air in an enclosed space is greater than that of the outside atmosphere."

The mechanical efficiency of the fan is 82%.

The pipe lengths, after the elbow at the distance L_1 from the inlet, are shown to scale. (That is, they are short).

- i) What is the pressure rise (Δp) provided by the fan?
- ii) What shaft power (watts) must be provided by the electric motor for these

Pipe 1

Pipe 2

Elbows

 $D_1 = 25 \text{ cm}$

 $D_2 = 35$ cm

Standard

 $L_1 = 40m$

(flanged)

Galvanized Iron

CAUTION: A control volume solution without a defined c.v. cannot be graded!

(5) b) There are two outlet flow paths from the plenum shown below. Twenty percent of the inflow leaves through a duct system which contains a steam heater. This 30cm diameter duct exhausts to atmospheric pressure with a uniform temperature of 80°C. State the average velocity at the duct exit.

(20) c) Eighty percent of the flow into the plenum exhausts through the "outlet passage" shown on the preceding sketch.

The x-y coordinate system for this flow is centered on the outlet orifice of diameter 20cm. The hinge, that supports the outlet passage, is located 15 cm from the orifice center point:

x,y for the hinge =
$$15 \cos 30$$
 (cm); $15 \sin 30$ (cm).

The exit nozzle is centered at:

x,y for the exit:
$$-45$$
 cm, $+30$ cm

and its discharge is in the negative x-direction. The nozzle diameter is 12.2cm.

The outlet passage is held down by a latch at 15 cm from the orifice center point:

$$x,y$$
 latch: $-15 \cos 30 (cm)$, $-15 \sin 30 (cm)$

What force must be applied by the latch?

(Note, center of gravity of the 2.0 N weight outlet passage is at x=-20 cm, y=15 cm).

- (15) 2. A disc, of diameter D_D , is placed in a cylinder (diameter = D_c) and rotated at a rate Ω . The disc is H_D above the lower surface and H_s below the upper "surface" that can either be (i) the top cover of the cylinder for an air environment, or (ii) a free surface at atmospheric pressure for a liquid environment. (Both types of fluids are Newtonian). It is considered to be apparent that the spinning disc will create an outward flow from the center of the disc.
- (2) a) Define an appropriate "characteristic velocity" (L/t) and a characteristic length scale (L) for this problem.

(3) b) The *air* prototype is to be investigated using a water model. The following features describe the air prototype:

$$D_D = 10 \text{ cm}, \quad D_c = 50 \text{ cm}, \quad H_s = 100 \text{ cm}$$
 $H_D = 10 \text{ cm}, \quad \Omega = 2000 \text{ rpm}$

The water model is established with $D_D = 15$ cm. State the other conditions of the model and briefly justify your answers.

(2) c) If glycerin is mixed with the water of part (b), one can obtain a 20% increase in the fluid viscosity. What will change between (b) and (c)? Show your work.

(3) d) A pressure tap at the center of the disc, top surface, is used to record the following Δp :

$$\Delta p = p(z = H_s, r = 0) - p(z = 0, r = 0)$$

For a measured value of Δp in the model, state $\Delta p)_{prototype}$ as

$$\Delta p)_{\text{prototype}} = \Delta p)_{\text{model}} [$$
] (fill in []).

Show your work.

(2) e) The bearings in the model *and* prototype can be considered to offer negligible resistance to rotation. If P_p is the power to drive the prototype and P_m is the power to drive the model, fill in [] for:

$$P_p = P_m [].$$

(3) f) A curious experimentalist decides to reduce the H_s level for the experiment of part (b). It is noted that, when H_s is at 60% of its height in (b), the free surface is no longer flat. Rather, a dimple, or a depression, has appeared on the centerline. state the "new" parameter that is important in the model that is not present in the prototype *and* state its numerical value.