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Problem 1:

The propeller of a 150 m long ocean-going cargo ship is 2.5 m in diameter and rotates at 100
rpm. In such ships, the propeller is typically positioned a small distance below the ocean surface.
If a 1:100 scale model of the ship and propeller is to be tested in a water tank, and effects of
water viscosity can be neglected,

1. Find the dimensionless groups that characterize the drag force on the ship that the thrust of its
propeller must balance, and give their names.

2. At what rpm should the model’s propeller rotate?

3. If the drag coefficients of the real and model ships are the same, what is the ratio between the
power requirements of the model and the full-size ship?



Problem 2:

A viscous Newtonian fluid flows down a vertical tube of diameter D under the influence of
gravity. The flow is assumed to be fully developed along its entire length and both ends of the
tube are at atmospheric pressure. Find an expression for the mean velocity U in terms of g, D and
other parameters of the problem.



Problem 3:

Consider a series of turning vanes struck by a continuous jet of water (density = 1000 kg/m?), as
shown in the figure below) that leaves a 50 mm diameter nozzle at constant speed of 86.6 m/s.
The vanes move with a constant speed of 50 m/s. Note that all the mass flow leaving the jet
crosses the vanes. The curvature of the vanes is described by the angles shown in the figure
below. Ignoring friction effects on the flow over the vane:

a) Evaluate the nozzle angle, o, required to assure that the jet enters tangent to the leading edge
of each vane.

b) Calculate the force that must be applied to maintain the vane speed constant.
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Problem 4:

An arctic hut in the shape of a half-circular cylinder is of radius R,. A wind of velocity U,
batters the hut and threatens to raise it off its foundations due to the lift of the wind. This lift is
partly due to the fact that the entrance to the hut is at the ground level at the location of the
stagnation pressure. It is proposed to raise the entrance from the ground level (as shown in the
figure) to a position at which the net lift force on the hut would vanish. To determine the angle 6
at which the entrance should be positioned, the flow is assumed to be incompressible, inviscid
and irrotational. Under these assumptions, the two-dimensional wind velocity field around the
hut is given by:

2
v, = Uw(l— R, }cos@

2
r

2
V, = —Uw(l+ fg )sin@

where r and 0 are cylindrical coordinates as defined in the figure below. Using the above
information find the angle 0 of the new entrance that will nullify the net lift force on the hut.

(Hint: Isin3 (ax)dx = — cos(ax) N cos®(ax) )
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Problem 5:

1. Two soap bubbles, A and B, are of identical composition and are connected by a thin tube.
The bubbles are initially of equal size. Bubble A is then perturbed so that its diameter
momentarily exceeds that of bubble B. What happens next, and why?

2. When driven from the tee, a dimpled golf ball travels faster than a smooth one of equal
diameter. Explain why. Also, explain whether a dimpled tennis ball would travel faster than a
smooth one when served.

3. If the height of a levee is increased by 20%, to provide better protection against higher water
levels caused by hurricane activity, how much greater a hydrostatic force must it also be able to
withstand?

4. An aircraft takes off from a runway at a fixed speed on two different days—a cold day and a
warm day. On which day would it reach its cruising altitude sooner, and why?



Integral mass conservation equation:
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Integral momentum equation:
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Integral angular momentum equation:
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The Equation of Continuity

Rectangular Coordinates ( x, y, z):
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Cylindrical Coordinates (r, 8, z):
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Momentum Equations for Incompressible Newtonian Fluid with Constant Viscosity (u)

Rectangular Coordinates ( x, y, z):
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Table C-3 Components of the Stress Tensor for Newtonian Fluids
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Fig. 1.4. Drag coefficient for circular cylinders as a function of the Reynolds number
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Fig. 1.5. Drag coefficient for spheres as a function of the Reynolds number
Curve (1): Stokes's theory, eqn. (6.10); curve (2): Oseen’s theory, eqn. (6.13)

Curve (1), Stokes’ theory:



