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Problem 1:

A disc with mass M is initially in equilibrium under the action of two identical but opposing
water (density p) jets as shown in the figure below. The disc is supported on a square base with a
side length of W and negligible mass. The base is free to move sideways on top of a thin oil film
with viscosity u and thickness 4. The disc is suddenly given a velocity equal to the jet velocity
(i-e. Vo) to the right. Obtain: (1) an expression for the resulting displacement of the disc versus
time; and (2) the maximum displacement. Neglect any mass of liquid adhering to the disc/base
and the air drag force. Also, consider the flow to be steady, assume that the motion takes place
only along the horizontal direction and ignore the oil-film behavior near the edge of the base.
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Problem 2:

It is desired to build a micro device in which a 10 pm-diameter cylinder oscilates at a frequency
of 100 kHz with/against an air flow of uniform velocity (U,) of 10 m/s . The amplitude of
oscillation (8) is anticipated to be 1 um. For the purposes of designing the device, it is desired to
estimate the unsteady flow force acting on the cylinder (which may be assumed infinitely long).
Because of the difficulty and cost in fabrication of the micro device as well as the difficulty in
measuring forces acting on such a small object, an engineer proposes to conduct a scale-up test
in a water channel, in which the cylinder diameter is 5 mm. Employ a procedure of your choice
to obtain the appropriate non-dimensional parameters for this problem (show details of your
work). What should the values of U,, & and f, be for the test? (you may take the kinematic
viscosity and density of water as ten and thousand times that of air, respectively)
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Problem 3:

Two superposed layers of immiscible liquid of equal density p but different viscosity p, each of
constant uniform thickness H, are contained between two infinite, horizontal, parallel plates. The
bottom plate is fixed and the upper plate moves with a constant velocity U,. The fluid motion is
caused entirely by the movement of the upper plate, i.e. there is no pressure gradient in the flow
direction. The flow can be considered laminar, two-dimensional, steady, and parallel to the
plates. Use the coordinate system indicated below.
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(@) Reduce the equations of motion for this problem and derive the differential equation
satisfied by the velocity profiles () and #x(y) in the two fluids. You must explain all your
steps, i.e. what are the consequences of the continuity equation, and what happens to the
various terms in the Navier-Stokes equations. Clearly indicate the boundary conditions for
this problem.

(b) Derive the shape of the velocity profiles u;(3) and u(y) in the two liquid layers.

(c) Derive the velocity U at the interface in terms of the plate velocity U, and the viscosity ratio
M=o/ . For the special case of M= 100, determine the interface velocity and sketch the
velocity profiles in the two liquid layers.



Problem 4:

A 0.1-m diameter cork ball (specific gravity SG = 0.2) is tied to the bottom of a river as shown
below. Calculate the speed U of the river current. You may neglect the weight of the cable and
the drag on it. For water, p = 999 kg/m’, and p = 0.00112 kg/(m.s) .
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Integral mass conservation equation:

Integral momentum equation:
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Integral angular momentum equation:
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The Equation of Continuity

Rectangular Coordinates (x, y, z):
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Cylindrical Coordinates (r, 8, z):
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Momentum Equations for Incompressible Newtonian Fluid with Constant Viscosity (1)

Rectangular Coordinates (x, y, z):
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Cylindrical Coordinates (r, 4, z):
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Table C-3 Components of the Stress Tensor for Newtonian Fluids

Rectangular Coordinates Cylindrical Coordinates
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Fig. 1.4. Drag coefficient for circular cylinders as a function of the Reynolds number
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Fig. 1.5. Drag coefficient for spheres as a function of the Reynolds number
Curve (1): Stokes’s theory, eqn. (6.10); curve (2); Oseen’s theory, eqn. (6.18)



