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Problem 1:

A water (density = 1000 kg/m?) jet issuing from a tank is used to support a disc with mass m as
shown in the figure below. Assuming H=35m, d =25 mm and M = 1 kg, do the following:
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. (2) Ignoring viscous losses, determine the height h of the disc as function of the pipe length L.
Calculate the largest possible value of L and corresponding value of h in meters. Also,
obtain the largest possible value of h and the corresponding L value in meters?

(b) If the losses in the system are characterized by a loss coefficient K = 0.3 (based on the
dynamic head at the exit of the pipe) when L = 0.25 m, what is the value of h? What is the

corresponding value when the losses are neglected? ‘



Problem 2:

Consider the two-dimensional airflow over an oscillating airfoil, as shown in the figure below.
The airfoil has a chord length C and oscillates at a frequency of f. The approaching flow
freestream velocity is Us. Reduce the differential form of the governing equations associated
with this problem into a non-dimensional form. Based on this, identify the relevant non-
dimensional parameters. If it is planned to test the airfoil in water by employing a model of one- ;=
tenth the actual airfoil size, determine the appropriate values of C, f and U,, for the test if the
corresponding actual-airfoil parameters are: 1m, 10 Hz, and 10 m/s, respectively. You may
assume the kinematic viscosity of water to be one-tenth that of air.




P;'oblem 3:

Two superposed layers of immiscible liquid (for exampe, oil over water) of equal density p, each
of constant uniform thickness H, flow due to gravity down an inclined plane at angle a. The
lower liquid has a coefficient of viscosity ;. The upper liquid is much more viscous and has a
higher coefficient of viscosity pp. The flow is two-dimensional, ste steady, and parallel to the plane

The free surface is exposed to constant atmospheric pressure, with negligible shear stress on the
free surface. Use the coordinate system indicated below.

(a) Reduce the equations of motion for this problem and derive the differential equation
satisfied by the velocity. profiles u;(y) and uy(y) in the two fluids. You must explain all your
steps, i.e. what are the consequences of the continuity equation, what happens to various terms in
the Navier-Stokes equations, and what happens to the pressure field. Clearly indicate the
boundary conditions for this problem. |

(b) Derive the shape of the velocity profiles u1(y) and u2(y) in th,e two liquid layers.

(©) Derive how much the velocity changes across the top, more viscous, layer in terms of the
u(y=H)
u,(y=0)
that for a very viscous oil layer over water with M = 100 the velocity in the oil layers hardly

varies at all.

velocity ratio across the layer as a functlon of the viscosity ratio M = po/p; . Show



® (d  Problem 4:

A fishnet is made of 1-mm diameter nylon strings tied into squares 10 cm per side. A fishing -

boat is towing is seawater a 10 m x 10 m section of this net normal to its plane at a speed of 1/8
m/s. For seawater, p = 1030 kg/m3 ,and p=0.0012 kg/(m.s) .

Estimate the force and the horsepower required to tow the fishnet.

10 cm

—y
] !

Diameter D = 1 mm

T . 10 cm

A piece of the fishnet



. Integral mass conservation equation:
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Integral momentum equation:
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~ Table C-1 The Equation of Continuity

Rectangular Coordinates (x, y, z):
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Spherical Coordinates (r, 8, @): '

dp 1

d 2 1 4 . 1 4
P + = E_—-(pr v,) + e ao(puosm é) + (pvg) =0

rsind dg

' Table C-5 Momentum Equations for a Newtonian Fluid with Constant Density (p) and Constant Viscosity (p)

Rectangular Coordinates (x, y, z):
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Cylindrical Coordinates (r, 6, z): .
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Table C-3 Components of the Stress Tensor for Newtonian Fluids

Rectangular Coordinates Cylindrical Coordinates
(x,y,l) (r9012)
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Fig. 1.5. Drag coefficient for spheres as a function of the Reynolds number
Curve (1): Stokes’s theory, eqn. (8.10); curve (2): Oseen's theory, egn. (6.13)



