Student ID

Department of Mechanical Engineering Michigan State University East Lansing, Michigan

Ph.D. Qualifying Exam in Fluid Mechanics

- Closed book, but one sheet (8.5" x 11", front and back) of your own notes with equations permitted.
- Some basic equations are provided on an attached information sheet.
- Answer all questions.
- All questions have the same weighting.

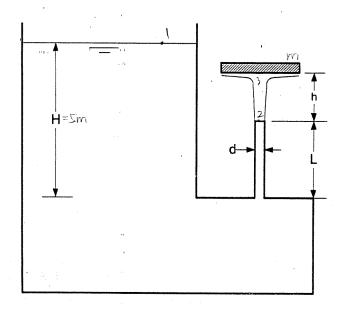
Exam prepared by

Professor M. Koochesfahani Professor A. Naguib

Fall 2005

Problem 1:

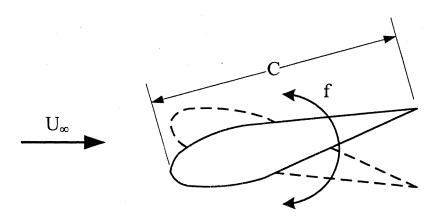
A water (density = 1000 kg/m^3) jet issuing from a tank is used to support a disc with mass m as shown in the figure below. Assuming H = 5 m, d = 25 mm and M = 1 kg, do the following:



- (a) Ignoring viscous losses, determine the height h of the disc as function of the pipe length L. Calculate the largest possible value of L and corresponding value of h in meters. Also, obtain the largest possible value of h and the corresponding L value in meters?
- (b) If the losses in the system are characterized by a loss coefficient K = 0.3 (based on the dynamic head at the exit of the pipe) when L = 0.25 m, what is the value of h? What is the corresponding value when the losses are neglected?

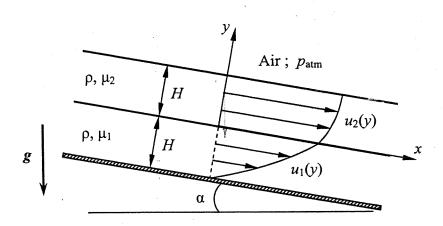
Problem 2:

Consider the two-dimensional airflow over an oscillating airfoil, as shown in the figure below. The airfoil has a chord length C and oscillates at a frequency of f. The approaching flow freestream velocity is U_{∞} . Reduce the differential form of the governing equations associated with this problem into a non-dimensional form. Based on this, identify the relevant non-dimensional parameters. If it is planned to test the airfoil in water by employing a model of one-tenth the actual airfoil size, determine the appropriate values of C, f and U_{∞} for the test if the corresponding actual-airfoil parameters are: 1m, 10 Hz, and 10 m/s, respectively. You may assume the kinematic viscosity of water to be one-tenth that of air.



Problem 3:

Two superposed layers of immiscible liquid (for exampe, oil over water) of equal density ρ , each of constant uniform thickness H, flow due to gravity down an inclined plane at angle α . The lower liquid has a coefficient of viscosity μ_1 . The upper liquid is much more viscous and has a higher coefficient of viscosity μ_2 . The flow is two-dimensional, steady, and parallel to the plane. The free surface is exposed to constant atmospheric pressure, with negligible shear stress on the free surface. Use the coordinate system indicated below.

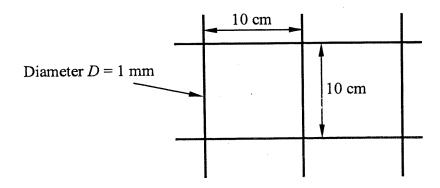


- (a) Reduce the equations of motion for this problem and derive the differential equation satisfied by the velocity profiles $u_1(y)$ and $u_2(y)$ in the two fluids. You must explain all your steps, i.e. what are the consequences of the continuity equation, what happens to various terms in the Navier-Stokes equations, and what happens to the pressure field. Clearly indicate the boundary conditions for this problem.
- (b) Derive the shape of the velocity profiles $u_1(y)$ and $u_2(y)$ in the two liquid layers.
- (c) Derive how much the velocity changes across the top, more viscous, layer in terms of the velocity ratio across the layer $\frac{u_2(y=H)}{u_2(y=0)}$ as a function of the viscosity ratio $M = \mu_2/\mu_1$. Show that for a very viscous oil layer over water with M = 100 the velocity in the oil layers hardly varies at all.

(d) Problem 4:

A fishnet is made of 1-mm diameter nylon strings tied into squares 10 cm per side. A fishing boat is towing is seawater a 10 m \times 10 m section of this net normal to its plane at a speed of 1/8 m/s. For seawater, $\rho = 1030 \text{ kg/m}^3$, and $\mu = 0.0012 \text{ kg/(m.s)}$.

Estimate the force and the horsepower required to tow the fishnet.



A piece of the fishnet

Integral mass conservation equation:

$$0 = \frac{\partial}{\partial t} \int_{CV} \rho d\nabla + \int_{CS} \rho \vec{V} \cdot d\vec{A}$$

Integral momentum equation:

$$\vec{F} = \vec{F}_s + \vec{F}_B = \frac{\partial}{\partial t} \int_{CV} \vec{V} \rho d \nabla + \int_{CS} \vec{V} \rho \vec{V} \cdot d\vec{A}$$

Table C-1 The Equation of Continuity

Rectangular Coordinates (x, y, z):

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho v_x) + \frac{\partial}{\partial y}(\rho v_y) + \frac{\partial}{\partial z}(\rho v_z) = 0$$

Cylindrical Coordinates (r, θ, z) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r v_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho v_\theta) + \frac{\partial}{\partial z} (\rho v_z) = 0$$

Spherical Coordinates (r, θ, φ) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (\rho r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\rho v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} (\rho v_\varphi) = 0$$

Table C-5 Momentum Equations for a Newtonian Fluid with Constant Density (ρ) and Constant Viscosity (μ)

Rectangular Coordinates (x, y, z):

$$\rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right) = \mu\left[\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right] - \frac{\partial p}{\partial x} + \rho g_x$$

$$\rho\left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right) = \mu\left[\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2}\right] - \frac{\partial p}{\partial y} + \rho g_y$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) = \mu\left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right] - \frac{\partial p}{\partial z} + \rho g_z$$

Cylindrical Coordinates (r, θ, z) :

$$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z \frac{\partial v_r}{\partial z}\right) = \mu\left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r)\right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta}\right] - \frac{\partial p}{\partial r} + \rho g_r$$

$$\rho\left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r v_\theta}{r} + v_z \frac{\partial v_\theta}{\partial z}\right) = \mu\left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_\theta)\right) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta}\right] - \frac{1}{r} \frac{\partial p}{\partial \theta} + \rho g_\theta$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\right) = \mu\left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2}\right] - \frac{\partial p}{\partial z} + \rho g_z$$

Table C-3 Components of the Stress Tensor for Newtonian Fluids

Rectangular Coordinates (x, y, z)	Cylindrical Coordinates (r, θ, z)
$\overline{\tau_{xx} = \mu \left[2 \frac{\partial v_x}{\partial x} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]}$	$\tau_{rr} = \mu \left[2 \frac{\partial v_r}{\partial r} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$
$\tau_{yy} = \mu \left[2 \frac{\partial v_y}{\partial y} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$	$\tau_{\theta\theta} = \mu \left[2 \left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right) - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$
$\tau_{zz} = \mu \left[2 \frac{\partial v_z}{\partial z} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$	$\tau_{zz} = \mu \left[2 \frac{\partial v_z}{\partial z} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \right]$
$\tau_{xy} = \tau_{yx} = \mu \left[\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right]$	$\tau_{r\theta} = \tau_{\theta r} = \mu \left[r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \right]$
$\tau_{yz} = \tau_{zy} = \mu \left[\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right]$	$\tau_{\theta z} = \tau_{z\theta} = \mu \left[\frac{\partial v_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial v_{z}}{\partial \theta} \right]$
$\tau_{zx} = \tau_{xz} = \mu \left[\frac{\partial v_z}{\partial x} + \frac{\partial v_x}{\partial z} \right]$	$\tau_{zr} = \tau_{rz} = \mu \left[\frac{\partial v_z}{\partial r} + \frac{\partial v_r}{\partial z} \right]$
$(\nabla \cdot \mathbf{v}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$	$(\nabla \cdot \mathbf{v}) = \frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{\partial v_z}{\partial z}$

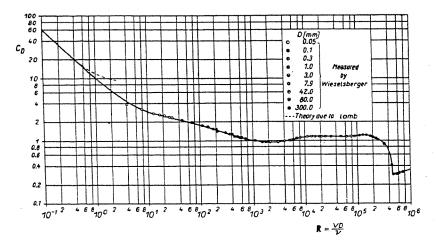


Fig. 1.4. Drag coefficient for circular cylinders as a function of the Reynolds number

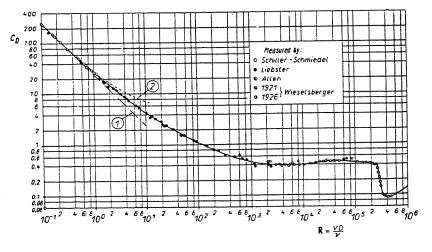


Fig. 1.5. Drag coefficient for spheres as a function of the Reynolds number Curve (1): Stokes's theory, eqn. (6.10); curve (2): Oseen's theory, eqn. (6.13)