1. The input step response of the second-order system

\[G(s) = \frac{1}{a_2 s^2 + a_1 s + a_0} \]

is shown in the figure below. Determine the values of parameters \(a_0, a_1, \) and \(a_2 \).
Sol:
2. A unit feedback open-loop transfer function is given by

\[KG(s)H(s) = \frac{K(s + 3)}{s(s - 2)} \]

a) Sketch the root locus of the system as a function of \(K \).
b) Find the value of \(K \) for which the closed loop system is critically damped, and
c) Find the range of \(K \) for which the system is stable without using Routh-Hurwitz criterion.

Sol:
3. Consider the following unit feedback system with plant transfer function $G(s)$ and controller transfer function $K(s)$.

$$
\begin{align*}
U(s) & \rightarrow s + 5 \quad \frac{s + 5}{s + 50} \rightarrow 50000 \frac{1}{s(s + 10)(s + 50)} \rightarrow Y(s)
\end{align*}
$$

a) Plot the Body diagram for $G(s)$ (with straight line approximation) in the next page
b) Plot the Body diagram for $K(s)G(s)$ in the next page
c) Calculate the closed loop system phase margin in degree and gain margin in dB

Sol:
4. Consider the following vehicle on a surface with a grade angle θ. Let $v = \dot{x}$ be the vehicle speed, $f_w = c_1 v + c_2 v^2$ be vehicle wind and aerodynamic resistance force, $f_r = c_3 v^2$ be the rolling resistance force, f_d be the vehicle driving force, and mg be the gravity force applied to the vehicle.

![Free Body Diagram of a Vehicle](image)

a) Draw free body diagram
b) Show that the mechanical system satisfies the following differential equation

$$m \ddot{v}(t) + c_1 v(t) + (c_2 + c_3)v^2 = f_d(t) - mg \sin \theta$$

c) Linearize the above nonlinear system at $v_0 = 40$ and $\dot{v}_0 = 0$

d) Find linearized transfer function $\frac{\tilde{V}(s)}{\tilde{F}(s)}$, where $\tilde{V}(s) = L[\tilde{v}(t)] = L[v(t) - v_0]$ and

$$\tilde{F}(s) = L\left[\tilde{f}(t)\right] = L[f_d(t) - mg \sin \theta - c_1 v_0 - (c_2 + c_3)v_0^2]$$

Sol: